-
公开(公告)号:CN112642459A
公开(公告)日:2021-04-13
申请号:CN202011556000.1
申请日:2020-12-24
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J27/24 , C02F1/30 , C02F1/72 , C02F101/34
Abstract: 本申请提供了一种高级氧化催化剂及其制备方法和应用,属于光催化纳米复合材料技术领域与污染物处理领域。该高级氧化催化剂为层状的C3N4‑Cg/ZnO,层状的C3N4‑Cg/ZnO由层状的C3N4‑Cg和片状ZnO组装而成;其中,C3N4‑Cg由g‑C3N4和g‑C3N4边缘处的石墨烯组成。本申请的高级氧化催化剂ZnO/C3N4‑Cg异质结构由于C3N4‑Cg的边缘石墨烯化了,使其具有更高的可见光光催化性能,在可见光区域内对水中有机污染物具有很好的降解效果。本申请中首先将碳氮源分两步煅烧制备了C3N4‑Cg,采用超声浸渍法将制备C3N4‑Cg与ZnO复合,得到了分散性高的高级氧化催化剂ZnO/C3N4‑Cg。本申请的超声浸渍无需高温煅烧,制备过程简单,且超声分散过程中并未破坏C3N4‑Cg的层状结构,ZnO/C3N4‑Cg的层状结构提高了对太阳光的利用率,增强了ZnO/C3N4‑Cg的光催化效率。
-
公开(公告)号:CN112619671A
公开(公告)日:2021-04-09
申请号:CN202011573177.2
申请日:2020-12-24
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J27/06 , C02F1/30 , C02F1/72 , C02F101/30
Abstract: 本申请提供了一种二元复合纳米催化剂及其制备方法和应用,涉及光催化水处理技术领域。该二元复合纳米催化剂为微球状的CQDs‑BiOBr,微球状的CQDs‑BiOBr的基底是BiOBr微球,CQDs纳米晶紧密负载在BiOBr微球表面,BiOBr微球由纳米板自组装而成BiOBr微球具有氧空位。本申请中在BiOBr中引入了氧空位和CQDs,氧空位和CQDs不仅拓宽了BiOBr催化剂对可见光的吸收范围,而且提高了BiOBr光生电子空穴对分离效率,显著增强了BiOBr光催化降解有机污染物的效率。本申请的CQDs‑BiOBr二元复合纳米光催化剂还具有高化学稳定性,可回收重复利用,很好的体现了本材料的环境友好性。在可见光照射和过硫酸盐存在的条件下,CQDs‑BiOBr对AAP具有很好光催化降解率,解决了传统光催化剂BiOBr光响应范围窄和光生电子空穴对复合效率高等缺点。
-
公开(公告)号:CN101696051B
公开(公告)日:2012-10-31
申请号:CN200910308679.X
申请日:2009-10-23
Applicant: 哈尔滨工业大学
Abstract: 一种先投加氯后投加二氧化氯联合消毒的水处理方法,它涉及一种联合消毒的水处理方法。本发明解决了现有联合消毒方式存在亚氯酸盐含量高,投氯量高,导致消毒成本高的问题。方法一:按每升待处理水氯的投加量为0.5~0.8mg投加氯、水中余氯浓度为0~0.015mg/L的条件下投加二氧化氯。方法二:按每升待处理水氯的投加量为0.81~1.3mg投加氯、水中余氯浓度为0~0.01mg/L的条件下投加二氧化氯。采用本发明两种方法将大幅降低三卤甲烷等氯消毒所产生的消毒副产物,亚氯酸盐的浓度将降低,本发明的方法所需设备简单,价格低廉,可直接应用单一消毒剂所使用的设备;投氯量大大降低,这样将降低消毒成本。
-
公开(公告)号:CN116393171B
公开(公告)日:2024-05-14
申请号:CN202310329508.5
申请日:2023-03-24
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J31/06 , C02F1/30 , B01J37/10 , B01J31/28 , C02F101/30
Abstract: 本发明提供一种Cu9S5基复合光催化纳米材料及制备方法和应用,包括:S1、将摩尔比为2:2:1的乙酸铜、硫脲和聚乙烯吡咯烷酮溶解于适量聚乙二醇后,放入反应釜中进行水热反应,控制所述水热反应的温度为150‑180℃,时间为15‑18h,反应产物经洗涤、真空干燥得到Cu9S5;S2、将所述Cu9S5溶解于去离子水中,进一步加入吡咯单体混合均匀得到混合溶液,继续向混合溶液中逐滴加物质的量是所述吡咯单体2.5倍的FeCl3溶液,搅拌使其发生反应,反应产物经洗涤、真空干燥得到Cu9S5与PPy的质量比为1:1‑7的所述Cu9S5基复合光催化纳米材料Cu9S5/PPy。该结构能在全光谱、可见光和近红外光催化体系下,对以雷尼替丁为代表的组胺H2受体拮抗剂的降解效果尤其显著,且具有稳定性好、可重复利用的特点。
-
公开(公告)号:CN112495415B
公开(公告)日:2023-04-25
申请号:CN202011312647.X
申请日:2020-11-20
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J27/24 , B01J37/10 , B01J37/08 , B82Y30/00 , B82Y40/00 , C02F1/30 , C02F1/72 , C02F101/30 , C02F101/34
Abstract: 本发明提供了一种纳米管催化材料及其制备方法和用途,其中,该方法包括:以三聚氰胺为原料,制备g‑C3N4;以Co(NO3)2·6H2O和三聚氰胺为原料,制备CNCo;以g‑C3N4、CNCo以及钛酸丁酯为原料,制备TCNCNCo‑30;在惰性气体保护下,对TCNCNCo‑30进行煅烧,制得纳米管催化材料TCNCNCo‑30‑500。本发明以g‑C3N4、CNCo以及钛酸丁酯为反应物,使得制备的纳米管催化材料TCNCNCo‑30‑500,具有CNCo纳米管和TiO2纳米颗粒的吸附、光催化特性及Co对可见光的强吸收特性,从而达到以该材料为催化材料,可以快速富集、去除、催化降解水环境中的双酚A的目的,解决了传统光催化剂催化效率低、较低的光转化效率和较窄的光响应范围等问题。
-
公开(公告)号:CN114130397B
公开(公告)日:2022-10-21
申请号:CN202111428842.3
申请日:2021-11-26
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J23/80 , C02F1/30 , C02F101/38 , C02F101/34 , C02F103/34
Abstract: 本发明提供了一种ZnO基异质结光催化复合材料及其制备和应用。所述方法包括:步骤1,制备TiO2溶胶;步骤2,制备TiO2‑rGO/Fe3O4悬浮液;步骤3,将溶解于蒸馏水的乙酸锌加入到上述TiO2‑rGO/Fe3O4悬浮液中,用氢氧化钠溶液调节其pH至12后,进行第一水热反应;步骤4,将第一水热反应后的反应体系进行第一后处理,得到ZnO1‑x@TiO2‑x‑rGO/Fe3O4纳米材料。本发明提供的可见光催化剂稳定性好、对微污染物降解速率高,且制备方法简单;其中,通过在rGO基元材料的表面附着带有氧空穴的TiO2‑x纳米颗粒、ZnO1‑x纳米颗粒及负载Fe3O4纳米颗粒,拥有了可以吸收全可见光谱的可见光、方便回收重复利用等优点,可适用于新烟碱类农药污染物的高效光催化处理。
-
公开(公告)号:CN112742419A
公开(公告)日:2021-05-04
申请号:CN202011555928.8
申请日:2020-12-24
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J27/06 , C02F1/30 , C02F101/34 , C02F101/30
Abstract: 本申请提供了一种可见光响应的新型纳米催化剂及其制备方法和应用,涉及光催化剂制备和光催化‑高级氧化水处理技术领域。本申请提供了一种新型纳米催化剂,花状CDs‑BiO1‑xCl微球的基底是花状BiO1‑xCl微球,CDs纳米晶紧密负载在花状BiO1‑xCl微球表面,花状BiO1‑xCl微球由纳米板自组装而成;其中,BiO1‑xCl具有氧空位,式中x为缺失的氧原子,1‑x代表留下的氧空位。由于本申请在BiOCl中制造了氧空位,再进一步引入CDs,CDs和氧空位的共同作用缩小了BiOCl禁带宽度,扩展了BiOCl的吸光范围,使得CDs‑BiO1‑xCl对可见光进行有效吸收,提高了CDs‑BiO1‑xCl催化剂太阳能利用率;此外,碳量子点独特的电子转移能力提高了CDs‑BiO1‑xCl的光生电子‑空穴分离效率,进而提高了CDs‑BiO1‑xCl的光催化性能。
-
公开(公告)号:CN109607772A
公开(公告)日:2019-04-12
申请号:CN201910027317.7
申请日:2019-01-11
Applicant: 哈尔滨工业大学
IPC: C02F3/28
Abstract: 一种完全混合式厌氧生物膜反应器,涉及一种厌氧生物膜反应器。本发明是要解决现有的厌氧生物膜反应器存在填料容易堵塞和短流、生物传质效果差、固液分离装置容易损坏的技术问题。本发明通过搅拌桨搅拌可以使悬浮填料流化,能够保证进水有机物和悬浮填料迅速混合,能够增大悬浮填料与废水的接触机会,增大悬浮填料与废水的接触面积以达到充分利用填料的目的,并且能够消除短流、沟流等现象,满足充分生物传质的要求;使用填料挂膜保持生物量,结构上省去了三相分离器等泥水分离装置,也不需另设固液分离装置以防止填料流失。
-
公开(公告)号:CN104944538B
公开(公告)日:2017-10-03
申请号:CN201510397510.1
申请日:2015-07-08
Applicant: 哈尔滨工业大学
Abstract: 一种基于供水管网生长环的铜绿假单胞菌和少动鞘氨醇单胞菌的灭活方法,它涉及饮用水中两种致病菌铜绿假单胞菌和少动鞘氨醇单胞菌的灭活方法。它要解决现有饮用水中铜绿假单胞菌和少动鞘氨醇单胞菌灭活效果差的问题。方法:在城市供水厂的清水池中投加α‑FeOOH和H2O2,即完成。本发明中H2O2的成本低廉,α‑FeOOH材料便宜易得,而且是生长环主要成分,一次投加后,可在城市给水管网中大量持续存在,后期只需投加H2O2即可,对设备要求简单,能量损耗低,节约投入和运行成本。α‑FeOOH和H2O2构成的类芬顿体对于滤后水中存在的铜绿假单胞菌和少动鞘氨醇单胞菌具有明显的灭活作用。
-
公开(公告)号:CN106904727A
公开(公告)日:2017-06-30
申请号:CN201710254102.X
申请日:2017-04-18
Applicant: 哈尔滨工业大学
IPC: C02F1/72 , C02F101/36
CPC classification number: C02F1/722 , C02F2101/36 , C02F2307/14
Abstract: 基于生长环和过氧化氢构成类芬顿试剂对四氯乙烯降解的方法及在城市供水系统中的应用,本发明涉及利用供水管网生长环和过氧化氢构成的类芬顿试剂对四氯乙烯进行降解的方法和应用,它要解决现有去除饮用水中四氯乙烯的方法存在费用偏高、对设备要求高的问题。降解方法是在含有四氯乙烯的原水中投加生长环和H2O2,在水处理过程中生成类芬顿试剂,反应去除水中的四氯乙烯。应用是在城市供水厂的清水池中投加H2O2,水中的H2O2与供水管网中的生长环反应生成类芬顿试剂,随供水循环去除水中的四氯乙烯。本发明生长环‑类芬顿试剂产生的羟基自由基对四氯乙烯的去除率较高,对生长环废物利用,只需投加H2O2即可,设备要求简单。
-
-
-
-
-
-
-
-
-