-
公开(公告)号:CN110795473A
公开(公告)日:2020-02-14
申请号:CN201911106961.X
申请日:2019-11-13
Applicant: 哈尔滨工业大学 , 电子科技大学广东电子信息工程研究院
IPC: G06F16/2458 , G06F16/242 , G06F16/27 , G06F9/445
Abstract: 本发明属于检索技术领域,具体涉及一种基于自举法的加速搜索方法,包括S1.将Hadoop架构下的用户搜索请求设置为三元组Q(Op,D,ρ),其中,Op表示用户对目标数据集合D的搜索操作,ρ为用户设置的搜索精度下限值;S2.从数据集合D中抽取初始样本S,然后以S为论域进行m次有放回采样{S1,...,Sm};S3.对步骤S2中实施操作Op(D)产生的m个结果{Op(S1),...,Op(Sm)}进行近似计算,得到变异系数的相对误差值;S4.根据步骤S3中的相对误差进行评估,得出满足用户近似精度的搜索结果。与现有技术相比,本发明采用自举法进行抽样,有效地降低了抽样过程中样本的数量,同时由于只需要从原始数据集中抽取一个较小的随机均匀抽样,因此,可以显著降低采样过程的磁盘成本。
-
公开(公告)号:CN119201984A
公开(公告)日:2024-12-27
申请号:CN202411263035.4
申请日:2024-09-10
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 国网黑龙江省电力有限公司电力科学研究院
Inventor: 张宏国 , 赵天诚 , 马超 , 张罗刚 , 关志博 , 李双翼 , 黄海 , 于海宁 , 王孝余 , 尚方 , 刘生 , 史心月 , 宋杭选 , 袁泽 , 王莹莹 , 李丹丹 , 林扬
IPC: G06F16/2452 , G06F16/242 , G06F16/33
Abstract: 基于检索增强生成的电力领域SQL自动生成方法及系统,涉及数据处理技术领域。解决了为了解决传统的SQL自动生成方法数据处理的效率和准确性低的问题。本发明首先将用户输入的问题编码为向量,并在预先编码的向量知识库中匹配相似度排名最高的k个键和描述信息。再基于排名最高的k个键及键对应的描述信息生成指令信息,SQL生成模型根据指令信息生成精准的SQL查询语句。本发明主要应用于电力领域自然语言问题转化为SQL查询语句。
-
公开(公告)号:CN118864087A
公开(公告)日:2024-10-29
申请号:CN202410910485.1
申请日:2024-07-09
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G06Q40/03 , G06N3/098 , G06N3/084 , G06N3/0499 , G06F21/62
Abstract: 本发明一种基于联邦学习和隐私保护的供应链金融信贷风险评估方法、系统及存储介质,涉及供应链金融领域,为解决现有方法中模型无法灵活适应不同类型数据,以及数据量不足和数据隐私问题。本发明基于联邦学习模型,参与方客户端采用信息瓶颈对信贷数据进行特征提取,并采用差分隐私向数据添加噪声,中心服务器对数据进行汇总得到全局数据集;改进的多层感知机的网络模型引入自适应激活函数和层间残差连接,参与方客户端基于本地数据集结合全局数据集对网络模型进行训练,采用同态加密对传送的模型参数加密,中心服务器对各参与方客户端模型参数进行安全聚合并解密,更新模型参数,循环训练得到信贷风险评估模型,对供应链金融信贷风险进行评估。
-
公开(公告)号:CN118820469A
公开(公告)日:2024-10-22
申请号:CN202410845741.3
申请日:2024-06-27
Applicant: 哈尔滨工业大学 , 上海浦东发展银行股份有限公司
IPC: G06F16/35 , G06F40/247
Abstract: 本发明提出一种数据分类分级方法,属于数据分类分级技术领域。包括:步骤一、用户向服务器上传待分类数据,并选择不提供具体数据的字段;步骤二、服得到数据字段和内容,当数据字段不含模板数据时执行步骤三,否则执行步骤四;步骤三、利用识别模型对数据进行字段扫描,若输出的结果与模板中某一数据唯一对应,则根据模板中的对应关系,确定字段等级,否则认为字段不属于模板范围内,执行步骤四;步骤四、利用识别模型对数据进行字段扫描,根据输出结果与模板中数据进行匹配形成正则规则数组,正则规则数组表征匹配结果;步骤五、执行匹配流程,得到分类等级;本发明提出了权重匹配函数。能够更加准确的对数据类型进行分类分级。
-
公开(公告)号:CN118779912A
公开(公告)日:2024-10-15
申请号:CN202410891893.7
申请日:2024-07-04
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
Abstract: 本发明公开了一种基于区块链技术的行程匹配方法及系统,涉及行程匹配技术领域。本发明的技术要点包括:所述方法应用在区块链上,首先确定最优行程距离的双方用户;然后调用智能合约对双方用户的位置数据进行扰动处理,调用智能合约对双方用户的手机号码进行加密处理,并存储扰动处理后的位置数据和加密后的手机号码;最后基于扰动处理后的位置数据对双方用户进行行程匹配;其中,扰动处理使得原始位置数据被加入随机噪声,双方用户无法从扰动后的数据中推断原始位置。本发明能够确保双方用户无法直接获取到对方的具体位置数据和手机号码,同时也能够保障用户的个人信息不被滥用,为用户提供了更加私密和可靠的出行体验。
-
公开(公告)号:CN118569559A
公开(公告)日:2024-08-30
申请号:CN202410622333.1
申请日:2024-05-20
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G06Q10/0631 , G06Q50/06 , G06F18/213 , G06F18/25 , G06N3/0464 , G06N3/042 , G06F18/2411 , H04L67/12
Abstract: 一种基于图卷积网络的联邦学习无人车充电预测方法、系统及存储介质,涉及港口自动化运输领域,为解决现有方法无法提供精确的充电调度,且存在数据孤岛的问题。本发明基于联邦学习模型,包括一个中心服务器和N个客户端,N个客户端包括无人车节点和充电站节点;S1、客户端分别接收无人车实时采集的数据;S2、采用图卷积网络处理无人车节点与充电站节点之间的交互,将无人车图结构数据与其它特征数据进行特征提取与融合,引入注意力机制增强对关键信息的聚焦;S3、客户端构建有无人车充电预测模型;S4、各客户端对模型进行训练;S5、各客户端将训练后的模型参数进行同态加密并发送给中心服务器进行聚合;S7、采用训练后的模型进行无人车充电预测。
-
公开(公告)号:CN118446356A
公开(公告)日:2024-08-06
申请号:CN202410521136.0
申请日:2024-04-28
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G06Q10/04 , H02J3/00 , G06Q50/06 , G06N3/0455 , G06N3/0499 , G06N3/048 , G06N3/049
Abstract: 本发明提出一种基于时空嵌入独立的多变量时间序列预测方法,属于多变量时间序列预测技术领域。获取多变量时间序列数据作为样本数据,构建基于时空嵌入独立的多变量时间序列预测模型,使用多变量时间序列数据训练预测模型,更新模型权重,将多变量时间序列的电力负荷数据输入至预测模型,输出预测结果。本发明显著地增加多变量时间序列预测的精度;显著地降低了模型的计算开销,同时可以解决了跨时间依赖建模和跨维度依赖建模之间相互耦合导致状态向量规模过大的问题和在多变量时间序列的各个变量没有明确相关关系时,显式跨维度依赖建模导致的过拟合问题。
-
公开(公告)号:CN117494209A
公开(公告)日:2024-02-02
申请号:CN202311546450.6
申请日:2023-11-20
Applicant: 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G06F21/62 , G06F21/64 , G06N3/0475 , G06N3/098 , G06N3/094
Abstract: 一种基于生成对抗网络的多模态推理攻击的防御方法、电子设备及存储介质,属于人工智能安全技术领域。为加强对联邦学习过程中推理攻击的特征数据安全性,本发明设置联邦学习框架基础为:各参与方在每轮联邦学习模型训练前向中央服务器声明本地训练数据的特征标签,用于联邦学习的特征对齐;构建成员推理攻击方法,采集参与方的训练数据,然后攻击方重构参与方的训练数据,将重构的数据,可搜集到的相关数据和参与方自身持有的数据作为训练数据集,用于训练多模态推理攻击模型;构建多模态推理攻击模型,包括样本数据为文本的文本推理攻击模型、样本数据为图像的图像推理攻击模型;针对构建的多模态推理攻击模型,构建多模态推理攻击的防御方法。
-
公开(公告)号:CN117318929A
公开(公告)日:2023-12-29
申请号:CN202311237702.7
申请日:2023-09-22
Applicant: 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
Abstract: 本发明提出一种隐私保护的异构联邦框架下数据投毒攻击的防御方法,属于攻击防御技术领域。包括:S1.密钥生成中心KGC为中央服务器PS生成一对LHE的非对称密钥,并且PS本地只保存私钥,每个边缘节点持有一对由KGC生成的非对称密钥,PS随机初始化全局模型的参数,发送给所有边缘节点集合,解密得到全局模型的参数进行本地训练;S2.PS组织所有边缘节点进行局部训练,通过聚类将所有边缘节点划分为多个集群,组织集群内的安全训练并提交更新;S3.设置威胁度使PS单独聚合所有更新;S4.当PS单独聚合更新的威胁度越大时,聚合中的权重越低,将聚合后的模型分发给所有领导节点。解决隐私性泄露威胁和鲁棒性不足的问题。
-
公开(公告)号:CN116362326A
公开(公告)日:2023-06-30
申请号:CN202310143695.8
申请日:2023-02-21
Applicant: 哈尔滨工业大学
Abstract: 基于多偏置交互的纵向联邦场景神经网络训练方法、电子设备及存储介质,属于隐私计算技术领域。为解决在安全传输的前提下提高效率的目的。本发明训练参与各方的模型结构为全连接层、Dropout层,包括训练发起方、训练协助方将训练发起方的数据、训练协助方的数据进行前向传播方法训练,得到前向传播方法的训练结果;将前向传播方法的训练结果进行反向传播方法训练,训练协助方和训练发起方分别进行模型参数的更新,完成一轮的训练,进入下一轮直至训练结果达到精度要求或者停止条件,完成基于多偏置交互的纵向联邦场景神经网络训练。本发明增加了训练各方之间的信息交互,特征的过滤功能得到多方数据信息的指导,结果更具说服力。
-
-
-
-
-
-
-
-
-