一种基于信息熵的数据填充方法及装置

    公开(公告)号:CN109460775A

    公开(公告)日:2019-03-12

    申请号:CN201811102220.X

    申请日:2018-09-20

    CPC classification number: G06K9/6298 G06K9/6223 G06K9/6276

    Abstract: 本发明实施例提供了一种基于信息熵的数据填充方法及装置,其中,方法包括:对已有数据中属性值完整的完整数据的属性值进行求均值或求众数,得到已有数据中缺少属性值的缺失数据中的预填充属性值;将预填充属性值预填充在缺失数据中,获得预填充后缺失数据;采用硬聚类算法K-means,对预填充后缺失数据以及完整数据进行聚类,获得与预填充后缺失数据处于同一簇内,且与预填充后缺失数据相似度达到预设条件的完整数据,作为相似完整数据;计算相似完整数据的信息熵;基于信息熵,计算相似完整数据中的属性值对缺失数据的属性值所作贡献的权重;利用权重与相似完整数据的属性值,计算缺失属性值;将缺失属性值填充在缺失数据中。

    一种图像检索/匹配方法及系统

    公开(公告)号:CN102521838A

    公开(公告)日:2012-06-27

    申请号:CN201110427104.7

    申请日:2011-12-19

    Abstract: 本发明公开了一种图像检索/匹配方法。该方法首先求取两幅图像的初始匹配特征点集,然后判断并消除误匹配特征点对,再根据正确匹配特征点对的数量判断两幅图像是否匹配;其中,判断是否为误匹配特征点对,包括:在两幅图像中,分别以初始匹配特征点为中心,将图像均划分为两个以上的区域,并对各区域编号;在两幅图像中,分别以其他各初始匹配特征点所处区域的编号构成的矢量来描述该初始匹配特征点的全局特征;对两个矢量进行比较,如果相似度达到要求,则为正确的匹配特征点对。本发明方法不仅适应于图像尺度变化、图像嵌套、视角变化等复杂情况下的图像检索,而且具有较高的检索效率和识别准确率。本发明还相应公开了一种图像检索/匹配系统。

Patent Agency Ranking