-
公开(公告)号:CN103955944B
公开(公告)日:2018-01-19
申请号:CN201410218968.1
申请日:2014-05-22
Applicant: 苏州大学
Abstract: 本发明提供一种图像边缘检测方法和装置,通过本发明实施例提供的图像边缘检测方法,在获取M个初始设定的窗口Ni对应的一阶边缘检测算子和二阶边缘检测算子后,可以利用M个一阶边缘检测算子得到一阶边缘检测图像以及利用M个二阶边缘检测算子得到二阶边缘检测图像;然后将一阶边缘检测图像和二阶边缘检测图像进行逻辑或运算,得到边缘检测图像。与现有技术相比,本发明实施例提供的图像边缘检测方法提出了同时基于一阶边缘检测算子和二阶边缘检测算子检测图像边缘的方法。并且经过发明人多次实验证明,将一阶边缘检测图像和二阶边缘检测图像进行逻辑或运算后,边缘检测图像中的噪声降低,从而提高边缘检测图像的抗噪能力。
-
公开(公告)号:CN103886310B
公开(公告)日:2017-09-19
申请号:CN201410163058.8
申请日:2014-04-22
Applicant: 苏州大学
Abstract: 本发明提供一种基于多个1类支持向量机的人脸相似性识别方法及系统。所述方法包括以下步骤。S1、对现有的人脸训练样本集进行处理,获得差样本对,并构造差样本对训练集。S2、对所述差样本对训练集按类别分别进行训练学习,获得1类SVM模型系数,并通过所述模型系数获得超球体半径rc。S3、获取任意两个测试样本的测试差样本对,并根据所述测试差样本对及超球体半径计算相似性判别模型,以判断所述任意两个测试样本的相似性。
-
公开(公告)号:CN103870848B
公开(公告)日:2017-02-15
申请号:CN201410128704.7
申请日:2014-04-01
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本发明提供了一种投影变换矩阵的获取方法、样本分类方法,投影变换矩阵的获取方法中使用训练样本的类别标签形成类别信息,并根据类别信息对训练样本进行分类得到同类样本和异类样本,并通过进一步的计算得到投影变换矩阵。本方法中由于类别标签能够准确的表示训练样本的类别,类别信息与类别标签是一一对应的,因此类别信息能够准确反应训练样本的类别,本方法中训练样本的类别信息是确定的不是通过计算得到的,因此通过类别信息对训练样本进行分类,不会出现分类出错的情况,因此本方法能够获得正确地投影变换矩阵,并很好地实现拉近同类之间距离,扩大异类之间距离的目的,进而使分类性能变好。
-
公开(公告)号:CN103279746B
公开(公告)日:2016-12-07
申请号:CN201310210372.2
申请日:2013-05-30
Applicant: 苏州大学
Abstract: 本发明公开了一种基于支持向量机的人脸识别方法及系统。所述方法包括:获取人脸样本训练集:对于人脸样本训练集中的每一个人脸样本,随机选取k个与该人脸样本属于同一个类别的人脸样本作为同类样本,随机选取k个与该人脸样本属于不同类别的人脸样本作为异类样本;根据所述同类样本和所述异类样本生成差样本对集合;所述差样本对集合中,对于所述人脸样本训练集中的每一个人脸样本,均有2k个同类差样本对,以及2k个异类差样本对;对于差样本对集合,采用支持向量机训练得到相似性判断模型;根据所述相似性判断模型得到分类模型,采用所述分类模型进行人脸识别。采用本发明的方法或系统,可以在保证快速采样的前提下提高人脸识别的效率。
-
公开(公告)号:CN104657749A
公开(公告)日:2015-05-27
申请号:CN201510097947.3
申请日:2015-03-05
Applicant: 苏州大学
IPC: G06K9/62
CPC classification number: G06K9/6269
Abstract: 本发明提供了一种时间序列的分类方法及装置,本申请中预先将训练时间序列集合的训练时间序列按类别标签分为各个训练时间序列子集,针对每个训练时间序列子集中的每个样本进行时间分段,使得每个训练时间序列由长段时间序列转换为短段时间序列,然后生成与每个训练时间序列子集对应的预设类别码本。本申请中每个类别均有自身的码本,这样便可使得测试时间序列与每个类别的码本均进行类别匹配,由于对长段时间序列进行了分段,使得聚集在一个时间序列内的各个特征分离,从而能够提取到训练时间序列子集的主要特征,进一步使得测试时间序列的匹配精度更高。
-
公开(公告)号:CN103676788B
公开(公告)日:2015-02-04
申请号:CN201310753094.5
申请日:2013-12-31
Applicant: 苏州大学
IPC: G05B19/41
Abstract: 本发明公开了一种面向光顺加工的数控加工轨迹处理方法,所述方法包括以下步骤:S1、遍历整条加工轨迹上的所有小线段,进行插值子区间的判定;S2、对插值子区间内的小线段,采用圆弧插值的方法进行插值计算;S3、遍历整条加工轨迹上的所有小线段,进行光顺滤波子区间的判定;S4、对需要进行光顺滤波的各个拐角采用滑动滤波技术进行滤波。本发明能满足数控系统实时性的要求,以及光顺加工对加工轨迹的特殊要求。
-
公开(公告)号:CN103927560A
公开(公告)日:2014-07-16
申请号:CN201410177935.7
申请日:2014-04-29
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本申请提供一种特征选择方法及装置,该方法通过响应接收到的训练样本集,生成第一训练样本集、与该第一训练样本集对应的第一特征索引集、第二训练样本集以及与该第二训练样本集对应的第二特征索引集,根据第一训练样本集计算第一元素,进而完成对第一特征索引集的更新,根据第二训练样本集计算第二元素,进而完成对第二特征索引集的更新,当更新后的第一特征索引集/第二特征索引集中各个特征的数量和满足预设值时,根据得到第一特征索引集以及第二特征索引集计算特征索引集,完成对特征的选择,以实现在特征选择的过程中,在保证学习效率的基础上,降低计算代缴、提高推广能力。
-
公开(公告)号:CN103927529A
公开(公告)日:2014-07-16
申请号:CN201410185212.1
申请日:2014-05-05
Applicant: 苏州大学
Abstract: 本发明公开了一种基于相似性学习的人脸集匹配方法及系统,首先通过选取部分样本作为训练样本,进行训练过程,实现对分类器的选取,避免了将所有的样本作为训练样本进行训练,并对训练集样本进行降维处理,得到降维训练样本,避免了高维数据对计算复杂度的增加,减少了训练周期,从而简化了训练过程,避免了复杂的过程,提高了训练速度。另外,本方案中通过选取训练集样本每类样本的几何平均值来构建多个不同的分类器,达到了通过简单的操作过程带来精确的结果的效果。
-
公开(公告)号:CN103870848A
公开(公告)日:2014-06-18
申请号:CN201410128704.7
申请日:2014-04-01
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本发明提供了一种投影变换矩阵的获取方法、样本分类方法,投影变换矩阵的获取方法中使用训练样本的类别标签形成类别信息,并根据类别信息对训练样本进行分类得到同类样本和异类样本,并通过进一步的计算得到投影变换矩阵。本方法中由于类别标签能够准确的表示训练样本的类别,类别信息与类别标签是一一对应的,因此类别信息能够准确反应训练样本的类别,本方法中训练样本的类别信息是确定的不是通过计算得到的,因此通过类别信息对训练样本进行分类,不会出现分类出错的情况,因此本方法能够获得正确地投影变换矩阵,并很好地实现拉近同类之间距离,扩大异类之间距离的目的,进而使分类性能变好。
-
公开(公告)号:CN103676788A
公开(公告)日:2014-03-26
申请号:CN201310753094.5
申请日:2013-12-31
Applicant: 苏州大学
IPC: G05B19/41
Abstract: 本发明公开了一种面向光顺加工的数控加工轨迹处理方法,所述方法包括以下步骤:S1、遍历整条加工轨迹上的所有小线段,进行插值子区间的判定;S2、对插值子区间内的小线段,采用圆弧插值的方法进行插值计算;S3、遍历整条加工轨迹上的所有小线段,进行光顺滤波子区间的判定;S4、对需要进行光顺滤波的各个拐角采用滑动滤波技术进行滤波。本发明能满足数控系统实时性的要求,以及光顺加工对加工轨迹的特殊要求。
-
-
-
-
-
-
-
-
-