-
公开(公告)号:CN103955944B
公开(公告)日:2018-01-19
申请号:CN201410218968.1
申请日:2014-05-22
Applicant: 苏州大学
Abstract: 本发明提供一种图像边缘检测方法和装置,通过本发明实施例提供的图像边缘检测方法,在获取M个初始设定的窗口Ni对应的一阶边缘检测算子和二阶边缘检测算子后,可以利用M个一阶边缘检测算子得到一阶边缘检测图像以及利用M个二阶边缘检测算子得到二阶边缘检测图像;然后将一阶边缘检测图像和二阶边缘检测图像进行逻辑或运算,得到边缘检测图像。与现有技术相比,本发明实施例提供的图像边缘检测方法提出了同时基于一阶边缘检测算子和二阶边缘检测算子检测图像边缘的方法。并且经过发明人多次实验证明,将一阶边缘检测图像和二阶边缘检测图像进行逻辑或运算后,边缘检测图像中的噪声降低,从而提高边缘检测图像的抗噪能力。
-
公开(公告)号:CN103279746B
公开(公告)日:2016-12-07
申请号:CN201310210372.2
申请日:2013-05-30
Applicant: 苏州大学
Abstract: 本发明公开了一种基于支持向量机的人脸识别方法及系统。所述方法包括:获取人脸样本训练集:对于人脸样本训练集中的每一个人脸样本,随机选取k个与该人脸样本属于同一个类别的人脸样本作为同类样本,随机选取k个与该人脸样本属于不同类别的人脸样本作为异类样本;根据所述同类样本和所述异类样本生成差样本对集合;所述差样本对集合中,对于所述人脸样本训练集中的每一个人脸样本,均有2k个同类差样本对,以及2k个异类差样本对;对于差样本对集合,采用支持向量机训练得到相似性判断模型;根据所述相似性判断模型得到分类模型,采用所述分类模型进行人脸识别。采用本发明的方法或系统,可以在保证快速采样的前提下提高人脸识别的效率。
-
公开(公告)号:CN103927560A
公开(公告)日:2014-07-16
申请号:CN201410177935.7
申请日:2014-04-29
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本申请提供一种特征选择方法及装置,该方法通过响应接收到的训练样本集,生成第一训练样本集、与该第一训练样本集对应的第一特征索引集、第二训练样本集以及与该第二训练样本集对应的第二特征索引集,根据第一训练样本集计算第一元素,进而完成对第一特征索引集的更新,根据第二训练样本集计算第二元素,进而完成对第二特征索引集的更新,当更新后的第一特征索引集/第二特征索引集中各个特征的数量和满足预设值时,根据得到第一特征索引集以及第二特征索引集计算特征索引集,完成对特征的选择,以实现在特征选择的过程中,在保证学习效率的基础上,降低计算代缴、提高推广能力。
-
公开(公告)号:CN103927529A
公开(公告)日:2014-07-16
申请号:CN201410185212.1
申请日:2014-05-05
Applicant: 苏州大学
Abstract: 本发明公开了一种基于相似性学习的人脸集匹配方法及系统,首先通过选取部分样本作为训练样本,进行训练过程,实现对分类器的选取,避免了将所有的样本作为训练样本进行训练,并对训练集样本进行降维处理,得到降维训练样本,避免了高维数据对计算复杂度的增加,减少了训练周期,从而简化了训练过程,避免了复杂的过程,提高了训练速度。另外,本方案中通过选取训练集样本每类样本的几何平均值来构建多个不同的分类器,达到了通过简单的操作过程带来精确的结果的效果。
-
公开(公告)号:CN103258211A
公开(公告)日:2013-08-21
申请号:CN201310214343.3
申请日:2013-05-31
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本申请实施例提供了一种手写体数字识别方法和系统,所述方法包括:计算待分类图像对应的待分类李群变换数据;获取预先训练的包括对应不同数字类别的样本李群变换数据,所述样本李群变换数据是根据不同数字类别对应的大量训练图像计算得到;确定最接近所述待分类李群变换数据的预设数量的目标样本李群变换数据;识别对应同一数字类别且数量最多的目标样本李群变换数据的数字类别为所述待分类图像的数字类别。通过本实施例可以实现简单高效的数字识别,且提高了识别准确率。
-
公开(公告)号:CN102789490A
公开(公告)日:2012-11-21
申请号:CN201210228899.3
申请日:2012-07-04
Applicant: 苏州大学
IPC: G06F17/30
Abstract: 本发明提供了一种数据可视化方法,包括:获取第一数据集并计算所述第一数据集中每个数据的可视化坐标,得到与所述第一数据集对应的可视化坐标集,其中,所述第一数据集包括n个D维数据,n为大于等于1的正整数,D为大于等于1的正整数;获取第二数据集并利用稀疏矩阵求加权值的方法增量式地处理所述第二数据集中的每个数据,得到所述第二数据集中每个数据的可视化坐标,并将每次处理得到的每个数据的可视化坐标加入到与所述第一数据集对应的可视化坐标集中,其中,N为大于n的正整数;输出与所述第一数据集对应的可视化坐标集。本发明还提供了一种数据可视化系统。本发明提供的数据可视化方法和系统提高了数据处理速度。
-
公开(公告)号:CN102663370A
公开(公告)日:2012-09-12
申请号:CN201210120265.6
申请日:2012-04-23
Applicant: 苏州大学
Abstract: 本发明公开了一种人脸识别的方法,通过对测试样本和训练样本进行随机的降维,并生成相似性学习训练集和测试集,选择支持向量机的正则参数和高斯核函数,将相似性学习的训练集输入到正则参数和高斯核函数中,得到分类器模型,再将相似性学习的测试集输入到分类器模型中,得到分类结果,通过将所述分类结果进行求和,与某一类样本的样本数量的商为所述某一类的相似性概率的大小,取得最大值,并将所述最大值输出,得到相似性概率的大小,得到最准确的人脸识别结果。通过对样本的降维,将样本复杂度降低,使得基于SVM来学习人脸图像之间的相似性的算法快速;另外,通过对于每一类进行的算法,使得人脸识别率有了相应的提高。
-
公开(公告)号:CN102360388A
公开(公告)日:2012-02-22
申请号:CN201110320482.5
申请日:2011-10-20
Applicant: 苏州大学
IPC: G06F17/30
Abstract: 本申请公开了一种基于支持向量回归的时间序列预测方法及系统。一种基于支持向量回归的时间序列预测方法,包括:从已有的时间序列数据集中选取历史数据,得出多个训练数据集;确定待构建的SVR模型的正则参数和高斯核参数,构建每个训练数据集对应的支持向量回归SVR模型;选取t-T+1时刻至当前t时刻之间的T个历史数据;在被预测时刻与当前时刻的第一差值小于等于SVR模型的个数的情况下,选取与所述第一差值对应的SVR模型,对T个历史数据直接利用该SVR模型获得被预测时刻的预测值。本申请的一步预测获得预测值的方式相对于现有技术多步预测获得被预测时刻的预测值的方式,预测误差的累积减少,进而获得预测值的精确度提高。
-
公开(公告)号:CN103927550B
公开(公告)日:2017-09-08
申请号:CN201410161915.0
申请日:2014-04-22
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本申请提供一种手写体数字识别方法及系统,该方法通过接收用户输入的待测手写体数字样本;通过训练得到的第一分类器、第二分类器、第三分类器分别对待测手写体数字样本进行预测,并输出第一分类器、第二分类器、第三分类器对待测手写体数字样本的预测结果;比较第一分类器、第二分类器、第三分类器对待测手写体数字样本的预测结果,若至少2个分类器得出的是相同的预测结果,则判定待测手写体数字样本属于该预测结果的类别,否则,判定待测手写体数字样本属于第二分类器输出的预测结果的类别。该方法通过使用3个分类器对待测样本进行预测,在保证预测速度的基础上,很大程度上提高了手写体数字识别的识别率。
-
公开(公告)号:CN103927529B
公开(公告)日:2017-06-16
申请号:CN201410185212.1
申请日:2014-05-05
Applicant: 苏州大学
Abstract: 本发明公开了一种基于相似性学习的人脸集匹配方法及系统,首先通过选取部分样本作为训练样本,进行训练过程,实现对分类器的选取,避免了将所有的样本作为训练样本进行训练,并对训练集样本进行降维处理,得到降维训练样本,避免了高维数据对计算复杂度的增加,减少了训练周期,从而简化了训练过程,避免了复杂的过程,提高了训练速度。另外,本方案中通过选取训练集样本每类样本的几何平均值来构建多个不同的分类器,达到了通过简单的操作过程带来精确的结果的效果。
-
-
-
-
-
-
-
-
-