量子根树机制演化极限学习机的调制信号识别方法

    公开(公告)号:CN114172770A

    公开(公告)日:2022-03-11

    申请号:CN202111423647.1

    申请日:2021-11-26

    Abstract: 本发明提供一种量子根树机制演化极限学习机的调制信号识别方法,利用加权Myriad滤波器抑制冲击噪声,提出一种量子根树机制进行高效求解,突破了现有基于演化极限学习机的调制信号识别方法的一些应用局限。本发明设计的量子根树机制演化极限学习机的调制信号识别方法设计了量子根树机制,能对冲击噪声下的极限学习机权值和阈值进行高精度求解,有效提高调制识别率。仿真实验证明了冲击噪声下量子根树机制演化极限学习机的调制信号识别方法的有效性,突破了传统方法在冲击噪声和低信噪比环境下性能恶化甚至失效的应用局限,相对于传统方法识别率大幅提高。

    强冲击噪声下基于嵌套阵列的鲁棒动态测向方法

    公开(公告)号:CN112800596A

    公开(公告)日:2021-05-14

    申请号:CN202110028619.3

    申请日:2021-01-11

    Abstract: 本发明提供一种强冲击噪声下基于嵌套阵列的鲁棒动态测向方法,包括:建立动态测向模型;初始化搜索空间;初始化所有个体量子位置并设定相关参数;构造适应度函数,计算适应度函数值、平均适应度值,计算整个生态系统当前代的平均适应度值;根据量子标杆学习机制实现寻优搜索过程;判断是否达到最大迭代次数G,若达到则中止循环迭代,输出外部标杆的量子位置和位置并进入下一步;判断是否达到最大快拍数Kp,若未达到,更新下一次快拍时P个方位角的搜索空间,返回步骤三;否则,输出动态测向结果。本发明在冲击噪声下设计了加权无穷范数低阶差分矩阵,通过将嵌套阵列虚拟为均匀线阵或近似均匀线阵,并利用极大似然测向方法实现了动态测向。

Patent Agency Ranking