-
公开(公告)号:CN109599123B
公开(公告)日:2021-02-09
申请号:CN201710911340.3
申请日:2017-09-29
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L21/02 , G10L19/02 , G10L19/04 , G10L21/038
Abstract: 本发明公开一种基于遗传算法优化模型参数的音频带宽扩展方法,所述方法包括:步骤1)对输入音频信号x(n)进行预处理,获得滤波信号;步骤2)对滤波信号进行调制重叠变换得到低频调制重叠变换系数;步骤3)将低频调制重叠变换系数划分子带,计算每个子带的均方根能量,得到低频频谱包络序列;步骤4)根据低频频谱包络序列,采用灰色模型GM(1,1)对音频信号的高频子带能量进行估计,得到高频频谱包络;步骤5)采用频谱复制、频谱折叠、非线性计算、综合多带激励或非线性预测方法对音频频谱细节进行扩展,得到高频频谱细节;步骤6)根据上述所得高频频谱包络和高频频谱细节恢复音频信号x(n)的高频频谱信息;步骤7)利用调制重叠反变换实现x(n)的带宽扩展。
-
公开(公告)号:CN111091809A
公开(公告)日:2020-05-01
申请号:CN201911051663.5
申请日:2019-10-31
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明提供一种深度特征融合的地域性口音识别方法和装置,方法包括:提取待识别语音的瓶颈BN特征和滑动差分倒谱SDC特征;将瓶颈BN特征和滑动差分倒谱SDC特征输入预先训练后的支持向量机SVM分类器中,得到输出的待识别语音的语音类别。本发明采用多特征融合的语种识别系统,提取语音的深度特征,融合传统的SDC特征,输入SVM分类器,实现更鲁棒的语种识别功能,取得了对地域性方言普通话较好的分类效果。
-
公开(公告)号:CN109599123A
公开(公告)日:2019-04-09
申请号:CN201710911340.3
申请日:2017-09-29
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L21/02 , G10L19/02 , G10L19/04 , G10L21/038
Abstract: 本发明公开一种基于遗传算法优化模型参数的音频带宽扩展方法,所述方法包括:步骤1)对输入音频信号x(n)进行预处理,获得滤波信号;步骤2)对滤波信号进行调制重叠变换得到低频调制重叠变换系数;步骤3)将低频调制重叠变换系数划分子带,计算每个子带的均方根能量,得到低频频谱包络序列;步骤4)根据低频频谱包络序列,采用灰色模型GM(1,1)对音频信号的高频子带能量进行估计,得到高频频谱包络;步骤5)采用频谱复制、频谱折叠、非线性计算、综合多带激励或非线性预测方法对音频频谱细节进行扩展,得到高频频谱细节;步骤6)根据上述所得高频频谱包络和高频频谱细节恢复音频信号x(n)的高频频谱信息;步骤7)利用调制重叠反变换实现x(n)的带宽扩展。
-
公开(公告)号:CN107644199A
公开(公告)日:2018-01-30
申请号:CN201710730447.8
申请日:2017-08-23
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于特征和区域协同匹配的刚体目标跟踪方法。该方法包括以下步骤:1)在初始图像中选定目标区域,并在目标区域检测SURF特征;2)在目标区域内,以每个SURF特征点为中心构建不变性区域;3)在当前图像到来时,提取其SURF特征,并与初始图像进行基于SURF特征和不变性区域的协同匹配,形成匹配点对;4)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明通过对SURF特征在复杂变化下的可重复性规律进行研究,利用SURF特征和区域模板协同匹配的方案求解运动参数,能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。
-
公开(公告)号:CN107506795A
公开(公告)日:2017-12-22
申请号:CN201710729430.0
申请日:2017-08-23
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06K9/6211 , G06K9/3233 , G06K9/4642 , G06K9/6215 , G06K2009/6213 , G06T7/62 , G06T2207/10016
Abstract: 本发明涉及一种面向图像匹配的局部灰度直方图特征描述子建立方法和图像匹配方法。该特征描述子建立方法包括:1)在图像中检测SURF特征以获取图像兴趣点;2)在图像兴趣点的不变性局部邻域内进行灰度信息分布统计,并生成灰度分布直方图;3)基于图像兴趣点的不变性局部邻域及灰度分布直方图,建立特征描述子。进行图像匹配时,首先采用该方法建立图像的特征描述子,然后通过特征描述子对图像的局部特征进行匹配,进而建立图像之间的对应关系。本发明能够使特征描述子在视角、仿射、光照等多种变换下实现更好的匹配性能,并在视频目标跟踪中保持了目标连续变化的自适应性。
-
公开(公告)号:CN113205801B
公开(公告)日:2024-03-19
申请号:CN202110498059.8
申请日:2021-05-08
Applicant: 国家计算机网络与信息安全管理中心 , 清华大学
Abstract: 本申请涉及一种恶意语音样本的确定方法、装置、计算机设备和存储介质。该方法包括:获取初始语音样本集;根据预设的多种恶意类别对初始语音样本集进行分类,得到多种恶意类别中每种恶意类别对应的语音样本子集;根据每种恶意类别对应的语音样本子集中的语音样本信息,计算每种恶意类别对应的语音样本子集的恶意度;将恶意度满足预设恶意度条件的恶意类别对应的语音样本子集中的语音样本,确定为恶意语音样本。本方法基于语音样本子集的恶意类别以及恶意度可自动确定恶意语音样本,有利于提高恶意语音样本的确定效率。
-
公开(公告)号:CN116778910A
公开(公告)日:2023-09-19
申请号:CN202310505872.2
申请日:2023-05-06
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/02 , G10L15/06 , G10L15/16 , G10L15/28 , G06F18/2135 , G06F18/241 , G06N3/0464 , G06N3/08
Abstract: 本申请提供了一种语音检测方法,包括:获取目标语音,将所述目标语音进行预处理,所述预处理包括预加重、分帧及加窗;确定所述预处理后目标语音的第一声道特征、第一声源波特征和多种第一相关特征;基于所述第一声道特征、第一声源波特征和多种第一相关特征确定所述第一主成分特征;将所述第一主成分特征输入训练好的分类器,输出分类的结果,所述分类结果为伪造语音,或自然语音。本申请利用伪造语音在基频处留下的痕迹信息,利用伪造语音与自然语音在声源和声道特征上的差异以实现伪造语音检测。使用主成分分析的方法分别对声源和声道特征进行筛选,选取具有较高相关性的主成分作为特征,减少特征维度和冗余特征,提高模型的泛化能力和效率。
-
公开(公告)号:CN111091809B
公开(公告)日:2023-05-23
申请号:CN201911051663.5
申请日:2019-10-31
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G10L15/00 , G10L15/02 , G10L15/08 , G06F18/2411 , G06F18/214 , G06F18/25
Abstract: 本发明提供一种深度特征融合的地域性口音识别方法和装置,方法包括:提取待识别语音的瓶颈BN特征和滑动差分倒谱SDC特征;将瓶颈BN特征和滑动差分倒谱SDC特征输入预先训练后的支持向量机SVM分类器中,得到输出的待识别语音的语音类别。本发明采用多特征融合的语种识别系统,提取语音的深度特征,融合传统的SDC特征,输入SVM分类器,实现更鲁棒的语种识别功能,取得了对地域性方言普通话较好的分类效果。
-
公开(公告)号:CN115915038A
公开(公告)日:2023-04-04
申请号:CN202110805859.X
申请日:2021-07-16
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明公开了一种基于移动用户信令数据的跨城通勤用户识别方法及装置,包括:基于每一周期的白天时间段与夜间时间段,利用目标区域的移动用户信令数据获取该周期日工作用户与该周期日居住用户;依据该周期日工作用户的该周期夜间信令数据与该周期日居住用户的该周期白天信令数据,分别得到该周期夜间信令消失用户与该周期白天信令消失用户;利用全部移动用户在设定时间段内成为该周期夜间信令消失用户或该周期白天信令消失用户的次数,得到跨城通勤用户识别结果。本发明基于原始信令数据挖掘跨城通勤用户,采用Spark计算框架进行分析处理,具有高可靠性和高效率,可用于区域人口监管。
-
公开(公告)号:CN115700514A
公开(公告)日:2023-02-07
申请号:CN202110806905.8
申请日:2021-07-16
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/35 , G06F16/332 , G06F40/30 , G06F18/2411
Abstract: 本发明公开了一种结合BIGRU和多头注意的事件主体提取方法及装置,包括:把文本数据转化为文本输入序列X;利用BiGRU网络获取文本输入序列X对应的向量XB;基于文本输入序列X与向量XB进行多头注意力计算;依据注意力计算结果,获取事件主体提取结果。本发明使用BIGRU网络学习上下文语义特征,通过引入多头注意力机制捕获序列中的关键特征信息,提高了工作效率及准确性。
-
-
-
-
-
-
-
-
-