一种基于卷积混合模型的慢速眼动识别方法及系统

    公开(公告)号:CN107450730B

    公开(公告)日:2020-02-21

    申请号:CN201710695419.7

    申请日:2017-08-15

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于卷积混合模型的慢速眼动识别方法及系统,属于眼电图技术领域,包括采用复值ICA算法对各频点的眼动数据进行盲源分离,得到各独立源信号在相应频点上的频域独立分量;对各频点上的独立分量进行尺度补偿,还原独立分量在观测分量中的真实比例成分;采用约束DOA算法对补偿后的独立分量进行排序调整;对尺度补偿后和排序后的各频点的独立分量进行短时傅里叶逆变换处理,得到时域上多通道独立源完整的时间信号;对多通道独立源完整的时间信号进行小波分解,将得到的分解结果与慢速眼动的评判标准进行对比与分析,与慢速眼动特征均相符的则识别为慢速眼动。本发明在时域中对多通道EOG信号进行小波分析,由于没有其他源信号的干扰能快速的从EOG信号中提取出慢速眼动。

    一种基于共同空间模式的眼动信号识别系统及其识别方法

    公开(公告)号:CN103892829A

    公开(公告)日:2014-07-02

    申请号:CN201410156043.9

    申请日:2014-04-17

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于共同空间模式的眼动信号识别系统及其识别方法,眼动信号识别系统包括眼动信号预处理模块、空域滤波器训练模块及眼动信号识别模块。识别方法包括:采集基于眼电图的眼动数据并对眼动数据进行预处理;将预处理后的所有数据分成训练数据和测试数据两个部分;对于训练数据,采用CSP算法对其进行空域滤波,并将滤波后结果作为特征参数输入到SVM分类器中进行SVM模型训练;对测试数据,同样使用CSP算法进行特征提取,并将结果送入已训练好的SVM分类器中进行识别,最终得到眼部动作的识别结果。本发明的眼动信号识别系统及其识别方法,具有对眼动信号识别正确率较高、眼动信号扩展分类能力较强、应用潜力大等优点。

    基于眼电信号的人机交互系统

    公开(公告)号:CN101598973A

    公开(公告)日:2009-12-09

    申请号:CN200910117156.7

    申请日:2009-06-26

    Applicant: 安徽大学

    Abstract: 基于眼电信号的人机交互系统,其特征是眼电信号采集与放大模块通过眼电信号传感器获取眼电信号,并对其进行放大;在线眼电信号处理模块实现对来自眼电信号采集与放大模块的信号进行在线模式识别,实时判断出操作者的眼部动作;以受控单元实现眼动模式的编码及受控命令的生成。本发明应用性强、测量精度高、识别速度快、操作简单方便,实现了基于眼电的特殊人机交互。本发明可以帮助肢体残疾人象正常人一样实现操控计算机、书写文本、浏览网页等操作或实现对其他电子设备,如对家电的无线控制等人机交互动作;同时还可以用于正常人不便用手操作计算机的场合,比如:矿井、营救手术、航天器、水下等条件苛刻或狭窄的环境中。

Patent Agency Ranking