-
公开(公告)号:CN104484684B
公开(公告)日:2018-11-02
申请号:CN201510001954.9
申请日:2015-01-05
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本申请公开了一种手写体识别方法及系统,方法为:利用带平滑范数L1的自编码器对训练样本集中的各个训练样本进行处理,得到对应的目标训练样本,所述目标训练样本与所述训练样本集中的样本标签组成目标训练样本集,所述带平滑范数L1的自编码器的目标函数中设有稀疏惩罚项,该稀疏惩罚项为平滑L1范数,然后利用目标训练样本训练分类器,得到目标分类器,利用带平滑范数L1的自编码器对待预测样本进行处理,得到目标待预测样本,最后将所述目标待预测样本输入至所述目标分类器,以确定待预测样本的类别。本申请的方案将平滑范数L1引入自编码器中,代替常用的KL散度,作为新的稀疏惩罚项,能够得到更具判别性的特征,使得最终的手写体识别率更高。
-
公开(公告)号:CN108710907A
公开(公告)日:2018-10-26
申请号:CN201810461229.3
申请日:2018-05-15
Applicant: 苏州大学
IPC: G06K9/62
CPC classification number: G06K9/6268 , G06K9/6256
Abstract: 本申请公开了一种手写体数据分类方法、模型训练方法、装置、设备及介质,包括:获取包含手写体数据样本和相应的手写体类别标签的原始训练样本集;对所述原始训练样本集进行数据预处理,以从所述原始训练样本集中选取出能够保持流形结构的非噪声数据,得到处理后训练样本集;利用所述处理后训练样本集进行稀疏支持向量机模型的训练,得到训练后模型。本申请在获取到原始训练样本集之后,会对原始训练样本集进行去噪处理,并且只保留能够保持流形结构的非噪声数据,从而降低了用于训练模型的样本数据的冗余度,减少样本数据量的同时还提升了样本数据的准确度,由此使得后续训练得到的模型具有非常出色的分类精度。
-
公开(公告)号:CN108416384A
公开(公告)日:2018-08-17
申请号:CN201810178640.X
申请日:2018-03-05
Applicant: 苏州大学
Abstract: 本发明实施例公开了一种图像标签标注方法、系统、设备及计算机可读存储介质。其中,方法包括将训练样本集和待标注图像输入卷积神经网络中,卷积神经网络为被训练样本集采用反向传播算法最小化交叉熵损失函数,以调整卷积神经网络的权重进行训练,并将训练好的卷积神经网络的权重进行重新加载,以提取训练样本集的样本网络特征集和待标注图像的测试网络特征集;根据样本网络特征集、测试网络特征集及标签集合,计算待标注图像属于标签集合中每类标签的概率,生成标签概率集;最后根据标签概率集,为待标注图像的进行标签标注。本申请提供的技术方案结合深度学习和标签传播算法,自动提取图像高层语义特征,从而提升了图像标注的效率和准确率。
-
公开(公告)号:CN108108687A
公开(公告)日:2018-06-01
申请号:CN201711365229.5
申请日:2017-12-18
Applicant: 苏州大学
Abstract: 本申请公开了一种手写体数字图像聚类方法、系统及设备,该方法包括:获取手写体数字图像对应的样本数据集;利用聚类算法从所述样本数据集中确定出m个聚类中心作为锚点;利用所述锚点确定所述样本数据集中不同样本数据之间的相似性矩阵;对所述相似性矩阵进行特征分解,以得到低维嵌入;利用聚类算法对所述低维嵌入进行聚类,以得到每个样本数据对应的聚类类别标签;结合所述聚类类别标签以及集成学习算法,确定出每个样本数据的最终分类结果。本申请有效地提升了手写体数字图像的分类准确率。
-
公开(公告)号:CN104376234B
公开(公告)日:2017-12-26
申请号:CN201410727536.3
申请日:2014-12-03
Applicant: 苏州大学
IPC: G06F19/22
Abstract: 本发明公开了一种启动子识别方法及系统:获取测试数据,确定所述测试数据的一次特征向量;利用自编码器,对所述测试数据的一次特征向量进行特征提取,得到所述测试数据的二次特征向量;利用预设支持向量机,对所述测试数据的二次特征向量进行分类,得到分类结果,当所述分类结果满足预设条件时,确定所述测试数据为启动子。相较现有技术中直接对利用KL散度提取到的特征向量进行分类判定,本发明利用了自编码器的神经网络学习算法,有效地提高了对启动子的识别性能,进而提高了识别准确度。
-
公开(公告)号:CN103164701B
公开(公告)日:2016-06-01
申请号:CN201310123349.X
申请日:2013-04-10
Applicant: 苏州大学
IPC: G06K9/20
Abstract: 本发明公开了一种手写体数字识别方法及装置。该手写体数字识别方法,包括:确定待识别图像,该待识别图像中包含手写体形式的待识别数字类别标签;依据像素点的灰度值,确定该待识别图像中的特定的像素点的像素特征;依据该特定的像素点的像素特征,确定该待识别图像的协方差;基于李群KNN算法,依据预设的训练图像集合中的各训练图像的协方差和该待识别图像的协方差,确定该待识别图像的近邻标签集;将该近邻标签集中个数最多的数字类别标签确定为该待识别数字类别标签。可见,与现有技术相比,本方案中,作为分类问题的特征的协方差依据特定的像素点的灰度值获得,有效利用了待识别图像的空间信息,因此,提高了手写体数字的识别准确性。
-
公开(公告)号:CN105469063A
公开(公告)日:2016-04-06
申请号:CN201510884791.3
申请日:2015-12-04
Applicant: 苏州大学
IPC: G06K9/00
CPC classification number: G06K9/00288 , G06K9/00268
Abstract: 本发明公开了鲁棒人脸图像主成分特征提取方法及识别装置,通过同时考虑人脸图像训练样本数据的低秩与稀疏特性,将经过一个投影嵌入的主成分特征直接进行低秩和L1-范数最小化,编码得到一个描述性强的鲁棒投影P,直接提取人脸图像的联合低秩与稀疏主成分特征,同时可完成图像纠错处理;利用鲁棒投影模型的训练样本的嵌入主成分特征,通过额外一个分类错误最小化问题得到一个线性多类分类器W*,用于人脸测试图像的归类;在处理测试样本时,利用线性矩阵P提取其联合特征,进而利用分类器W*进行归类;通过引入低秩恢复和稀疏描述的思想,可编码得到描述性更强的人脸图像主成分特征,可去除噪音,有效提高了人脸识别的效果。
-
公开(公告)号:CN105260995A
公开(公告)日:2016-01-20
申请号:CN201510866909.X
申请日:2015-12-01
Applicant: 苏州大学
IPC: G06T5/00
Abstract: 本发明公开了一种图像修复与去噪方法及系统,对于给定的原始训练图像,该方法包括:通过引入联合低秩与稀疏矩阵分解的思想,利用凸优化技术,将给定的训练样本图像数据矩阵分解为联合低秩与稀疏主成分特征编码矩阵与稀疏错误矩阵,根据所述训练图像样本数据的低秩和稀疏特性,确定所述训练图像样本数据的联合低秩与稀疏主成分特征以及错误矩阵,实现对所述原始的可能包含错误的图像进行修复与去噪处理,得到经过修复与去噪后的图像。本发明所提供的图像修复与去噪方法及系统,在对图像数据进行特征描述的同时充分考虑了数据的鲁棒低秩和稀疏特性,以克服现有技术的不足,提高了图像修复与去噪的性能及模型的鲁棒性。
-
公开(公告)号:CN105224957A
公开(公告)日:2016-01-06
申请号:CN201510697522.6
申请日:2015-10-23
Applicant: 苏州大学
CPC classification number: G06K9/6212 , G06K9/00268 , G06K9/6256
Abstract: 本发明公开了一种基于单样本的图像识别的方法及系统,包括:获取待识别图像;将所述待识别图像划分为预定尺寸的互不重叠的子图像,并利用LBP算法得到每个子图像的统计直方图;依次计算所述每个子图像的统计直方图与所述统计直方图相对应的各个样本中的统计直方图的第一曼哈顿距离,根据所述第一曼哈顿距离确定粗检样本;依次计算每个子图像的统计直方图与所述统计直方图相对应的所述粗检样本中的统计直方图的第二曼哈顿距离,根据所述第二曼哈顿距离确定与所述待识别图像最相似的最终样本;该方法及系统能够在提高人脸识别效果的同时,避免了在特征提取的过程中需要过多的时间。
-
公开(公告)号:CN104778479A
公开(公告)日:2015-07-15
申请号:CN201510197288.0
申请日:2015-04-23
Applicant: 苏州大学
IPC: G06K9/62
CPC classification number: G06K9/6286
Abstract: 本发明公开了一种基于稀疏编码提取子的图像分类方法及系统,通过将一个特征描述项集成到现有的判别型标签一致字典学习框架,提出一个统一的“编码+描述+分类”模型框架。模型通过最小化稀疏重构错误、特征描述错误、稀疏编码错误和分类错误,得到判别的稀疏编码,同时输出一个线性的稀疏编码提取子和一个多类分类器。稀疏编码提取子主要通过最小化图像数据之描述和其稀疏编码之间的拟合错误得到。通过计算一个稀疏编码提取子,可快速实现样本外图像数据的分类,无需引入额外的稀疏重构过程,有效提高了图像分类的精准度。分类过程主要通过线性分类器实现,输出测试样本的类别归属概率,取概率的最大值,用于类别鉴定,得到最准确的分类结果。
-
-
-
-
-
-
-
-
-