-
公开(公告)号:CN117527224A
公开(公告)日:2024-02-06
申请号:CN202311669147.5
申请日:2023-12-06
Applicant: 支付宝(杭州)信息技术有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/08
Abstract: 本说明书实施例提供一种多方安全计算的方法及装置,在多方安全计算的方法中,任意的第一方本地计算第一数据和第二数据各自的第一编号分片和第二编号分片的交叉乘积之和,得到第一目标和值,其中第一编号不同于第二编号。获取与第二方以及第三方共享的随机数,第二方同样持有第一编号分片和第二编号分片,第三方持有第一编号分片和第二编号分片之一。对第一目标和值和随机数进行运算,得到第一目标分片。基于第一目标分片、随机数和0得到第一目标和值的三个本方分片。根据与第二方的协议,与第二方各自将第一目标分片的分片数据发送给第四方,使其基于第一目标分片得到三个对应分片。
-
公开(公告)号:CN117454941A
公开(公告)日:2024-01-26
申请号:CN202311801348.6
申请日:2023-12-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/0464 , H04L9/08 , G06N3/08
Abstract: 本发明公开了一种基于函数秘密共享的安全二值神经网络推理系统。该系统包括输入层、隐含层和隐含层,根据实际神经网络结构设置若干个安全全连接运算单元、安全卷积运算单元、安全批量归一化运算单元、安全二值激活函数运算单元和安全最大池化运算单元。本发明通过生成矩阵乘法三元组,并基于此构建了高效的安全全连接层运算单元和安全卷积运算单元,结合离线‑在线计算范式,大大减少了客户端所需的计算和通信。此外,本发明基于函数秘密共享技术构建了安全二值激活函数运算单元和安全最大池化运算单元,能够支持混合位宽计算,减少了非线性函数计算所需的通信代价。
-
公开(公告)号:CN115600012B
公开(公告)日:2023-04-21
申请号:CN202211523157.3
申请日:2022-12-01
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/9535 , G06F8/75 , G06F18/214 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于知识增强和结构对比的API推荐方法,包括以下步骤:步骤1,代码预处理构图;解析源代码,提取方法、API和结构节点以及它们之间的关系,构成调用关系图和层次结构图;步骤2,知识增强的图嵌入学习;使用图卷积神经网络GCN在调用关系图上传播信息来细化方法和API的初始嵌入表示,同时用翻译模型TransH学习层次结构图中的实体和关系的嵌入表示;步骤3,多任务学习;包括主要的API推荐任务和辅助的对比学习任务。本发明的有益效果是:本发明提出了知识增强的图嵌入学习,使得方法和API的嵌入向量中不仅建模了调用交互还融合了代码中的层次结构信息,优化了方法和API的表示,达到更准确的推荐效果。
-
公开(公告)号:CN115200603A
公开(公告)日:2022-10-18
申请号:CN202211106644.X
申请日:2022-09-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于同态加密和匿名伪装的导航服务隐私保护方法及装置,方法包括:LBS服务商进行同态加密方案的初始化;用户利用匿名伪装算法分别生成出匿名伪装区域;用户根据匿名伪装区域的路网信息,随机选取出发点附近满足伪装距离L的出发地伪装点和目的地伪装点,同步规划出真实出发地到伪装出发地的路线;云服务商规划出一组候选路线,同时向LBS服务商请求实时路况信息;云服务商对候选路线组的开销进行进一步计算,利用全同态加密的比较运算,将密文比较结果传输给LBS服务商;从候选路线组中选取最佳路线并在本地将和伪装区域内的路线连接,生成最终的出行路线。本发明采用全同态加密和匿名伪装技术实现高质量的导航服务隐私保护。
-
公开(公告)号:CN112819052B
公开(公告)日:2021-12-24
申请号:CN202110094267.1
申请日:2021-01-25
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明涉及机器视觉技术领域,公开了一种多模态细粒度混合方法、系统、设备和存储介质,所述多模态细粒度混合方法包括:从多模态图文数据中提取数据特征,并获取数据特征的各个组成成分;数据特征包括视觉区域特征和文本单词特征;对数据特征的各个组成成分的模态信息进行细粒度分类,得到分类结果;根据分类结果,对各个组成成分进行来自模态内和模态间的信息融合,得到融合特征。本发明实施例提供的多模态细粒度混合方法在多模态细粒度混合时不以模态为单位进行,考虑到了各模态中不同组成成分的特点,所处上下文环境的差异,选择对应的合适的交互方式,可以使得多模态模型在利用多模态数据互补的特点的同时,避免不相关信息的影响。
-
公开(公告)号:CN108447080B
公开(公告)日:2023-05-23
申请号:CN201810175534.6
申请日:2018-03-02
Applicant: 哈尔滨工业大学深圳研究生院
IPC: G06T7/277 , G06N3/0464
Abstract: 本发明公开了一种基于分层数据关联和卷积神经网络的目标跟踪方法、系统和存储介质,其方法包括:获取跟踪目标的当前视频帧的检测响应以及当前视频帧之前的所有视频帧的跟踪片段;为每一条跟踪片段计算其置信度,其中,跟踪片段置信度是指当前已经完成部分连接的跟踪片段的可信赖程度;根据置信度的大小,将所有的跟踪片段分为高可靠度跟踪片段和低可靠度跟踪片段两部分,并以当前视频帧的检测响应为关联对象,为高可靠度跟踪片段进行局部数据关联处理,为低可靠度跟踪片段进行全局数据关联处理。本发明可以有效降低关联算法的时间复杂度,能够有效缓解在跟踪的过程中出现的局部遮挡问题,同时可以实现算法的鲁棒性和实时性的均衡。
-
公开(公告)号:CN108510559B
公开(公告)日:2022-03-08
申请号:CN201810288688.6
申请日:2018-03-30
Applicant: 哈尔滨工业大学深圳研究生院
IPC: G06T9/00
Abstract: 本发明涉及一种基于有监督多视角离散化的多媒体二值编码方法。该方法包括:S1.假设一个由n幅图像组成训练集,通过学习得到包含一系列子函数的哈希函数,将样本的两种不同模态的特征映射到经过优化的特征空间中,得到的一系列与哈希子函数对应的哈希值,然后通过二值量化将哈希值转化为二值化哈希码:S2.基于有监督训练的哈希函数:定义一个线性多分类模型并对模型函数进行优化,采用最小平方损失作为目标函数;S3.基于最小量化损失的哈希函数:假设一种模态的特征,通过哈希函数优化至量化损失最小;S4.基于多视角锚图的哈希函数:构造锚图,并采用锚图正则化哈希函数;S5.优化算法。本发明既可以保持数据在原始空间相似性,又能提高检索的准确率。
-
公开(公告)号:CN110012126B
公开(公告)日:2022-01-21
申请号:CN201910260964.2
申请日:2019-04-02
Applicant: 哈尔滨工业大学(深圳)
IPC: H04L61/4511 , H04L9/40 , H04L9/32
Abstract: 本发明提供的一种基于区块链技术的DNS系统,采用一条主链,记录少量的重要信息,主要负责存储顶级域上的请求和子链的哈希值;多条分别连接所述主链的子链,可以进行扩展、迁移和适当的舍弃,主要负责存储一个特定TLD下的所有操作请求,不同的子链存储不同的TLDs下的记录,所有的子链都和主链维持相同的区块高度;节点分布于所述主链和所述子链上并允许只存储主链和部分子链,利用可链接的环签名技术保证投票过程联盟节点的匿名性,节点利用代理签名处理没有存储的子链上的操作,利用分片技术来提高系统的吞吐量,解决现有技术中安全性差,性能受限,扩展性差,吞吐量低的技术问题,实现安全性更高,可扩展性更高,吞吐量更高,匿名性更好的技术效果。
-
公开(公告)号:CN113947022A
公开(公告)日:2022-01-18
申请号:CN202111220714.X
申请日:2021-10-20
Applicant: 哈尔滨工业大学(深圳)
IPC: G06F30/27 , G06V20/40 , G06K9/62 , G06V10/774 , G06V10/764 , G06N20/00
Abstract: 本发明公开了一种基于模型的近端策略优化方法,包括步骤:获取模拟环境,并确定所述模拟环境对应的环境模型和策略网络;基于所述策略网络与所述模拟环境,确定状态数据;其中,所述状态数据包括所述模拟环境的视频序列帧;基于所述模拟环境的视频序列帧训练所述环境模型,得到已训练的环境模型输出的预测图像;基于所述预测图像,更新所述状态数据,得到更新的状态数据;基于所述更新的状态数据,更新所述策略网络,得到更新的策略网络。融合基于模型的深度强化学习算法,提出了基于模型的近端策略优化框架,较好的解决了非完全信息博弈环境下采样利用率低的问题,在提高采样率的同时提升训练速度。
-
公开(公告)号:CN110309331B
公开(公告)日:2021-07-27
申请号:CN201910599265.0
申请日:2019-07-04
Applicant: 哈尔滨工业大学(深圳)
IPC: G06F16/51 , G06F16/583 , G06F16/31 , G06F16/33 , G06K9/62
Abstract: 本发明专利涉及一种基于自监督的跨模态联合哈希检索方法,该方法包括以下步骤:步骤1:针对图像模态数据进行处理:采用深度卷积神经网络对图像模态的数据进行特征提取,对图片数据进行哈希学习,将深度卷积神经网络的最后一层全连接层的节点个数设置为哈希码的长度;步骤2:针对文本模态数据进行处理:使用词袋模型对文本数据进行建模,建立一个两层的全连接神经网络对文本模态的数据进行特征提取,神经网络的输入是使用词袋模型表示的词向量,第一个全连接层节点的数据与第二个全连接层节点的数据与哈希码的长度相同;步骤3:针对类别标签处理的神经网络:采用自监督的训练方式从标签数据中提取语义特征;步骤4:最小化图像与文本网络所提取的特征与标签网络的语义特征间的距离,使得图像与文本网络的哈希模型能够更充分学习不同模态间的语义特征。
-
-
-
-
-
-
-
-
-