-
公开(公告)号:CN101559968A
公开(公告)日:2009-10-21
申请号:CN200910114823.6
申请日:2009-01-12
Applicant: 南昌大学 , 赣州虔东稀土集团股份有限公司
IPC: C01F17/00
Abstract: 一种高纯纳米钇基氧化物粉体的制备方法,属于纳米稀土材料制备领域,其特征是先用一元羧酸溶解以钇为主的高纯碳酸稀土或氧化稀土或氢氧化稀土,形成澄清的羧酸稀土溶液;然后在70~110℃下浓缩,冷却,至出现结晶,分离晶体;将分离得到的混合稀土羧酸盐晶体烘干;然后在700~1100℃,煅烧1~4小时,本发明克服了沉淀法洗涤和固液分离困难以及沉淀干燥煅烧后粉体结块团聚的难题,同时避免了溶胶-凝胶法生成凝胶干燥周期长(达数天)、得到粉体量少、纯度下降和团聚严重的问题。本发明工艺流程简单、设备原料常见、制备成本低、产物纯度高、分散性好,易于实现与常见的盐酸体系稀土萃取分离工艺衔接的工业化生产。
-
公开(公告)号:CN101462761A
公开(公告)日:2009-06-24
申请号:CN200910114824.0
申请日:2009-01-12
Applicant: 南昌大学
Inventor: 陈伟凡
IPC: C01F17/00
Abstract: 一种高纯纳米氧化铕粉体的制备方法,其特征是用一元羧酸溶解高纯碳酸铕或氧化铕或氢氧化铕,形成澄清的羧酸铕溶液,再将澄清的羧酸铕溶液在70~110℃下浓缩,冷却,至出现结晶,分离结晶体,然后将晶体烘干,再在700~1100℃煅烧1~4小时,本发明克服了沉淀法洗涤和固液分离困难以及沉淀干燥煅烧后粉体结块团聚的难题,同时避免了溶胶-凝胶法生成凝胶干燥周期长(达数天)、得到粉体量少、纯度下降和团聚严重的问题。本发明工艺流程简单、设备原料常见、制备成本低、产物纯度高、分散性好,易于实现与常见的盐酸体系稀土萃取分离工艺衔接的工业化生产。
-
公开(公告)号:CN118307841A
公开(公告)日:2024-07-09
申请号:CN202410587594.4
申请日:2024-05-13
Applicant: 南昌大学
IPC: C08J9/36 , C08J9/40 , C08J9/42 , C08J3/24 , C08L101/00 , C08L29/04 , C08L1/02 , C08K3/30 , C08K3/04 , C08K3/22 , C02F1/04
Abstract: 本发明属于光热转换材料技术领域,具体涉及一种光热材料的润湿性调控方法及其蒸发器。本发明首先合成负载光热转换组织的平面材料海绵片,随后在室温条件下对其表面进行不同程度的润湿能力改性,从而制得具有多种润湿性能差异的光热海绵片。最后,将具有润湿性梯度差异的光热材料组装成三维树状结构蒸发器。本发明中,不同润湿性的光热海绵片在蒸发过程中呈现不同的表面温度,通过探究其表面润湿能力与蒸发界面温度二者之间的关系,可揭示润湿性梯度对水输运效率和热量传导及其分布的控制规律,明晰水/热传输与蒸发速度的协调匹配机制,建立蒸发过程能质管理的高效模式。
-
公开(公告)号:CN112390247A
公开(公告)日:2021-02-23
申请号:CN202011250814.2
申请日:2020-11-11
Applicant: 南昌大学 , 江西善纳新材料科技有限公司
IPC: C01B32/184 , C01B32/168 , C01G41/00 , B82Y40/00 , B82Y30/00 , C02F1/14
Abstract: 本发明属于光热转换材料领域,具体涉及一种还原氧化石墨烯‑碳纳米管/铯钨青铜复合三维泡沫材料的制备方法,首先采用水热法制备还原氧化石墨烯‑碳纳米管复合前驱体,再利用冷冻干燥法处理还原产物制备还原氧化石墨烯‑碳纳米管复合三维泡沫,最后将该复合泡沫浸渍在铯钨青铜浆料中再烘干处理,从而获得还原氧化石墨烯‑碳纳米管/铯钨青铜复合三维泡沫材料。本发明中,具有交叉多孔网络结构的还原氧化石墨烯‑碳纳米管复合泡沫不仅提供了快速的水分子输送通道,还能产生多重散射作用以减少光透过损失。此外,附着在三维碳泡沫上的铯钨青铜纳米粒子可强烈吸收近红外光并产生大量热能,再通过其周围的碳基体高效传导,从而协同增强光热转换效应。
-
公开(公告)号:CN110523425B
公开(公告)日:2021-02-09
申请号:CN201910773046.X
申请日:2019-08-21
Applicant: 南昌大学
IPC: B01J27/24 , B01J37/08 , B01J37/16 , B01J37/18 , C02F1/30 , C02F1/32 , C02F101/30 , C02F101/34 , C02F101/38
Abstract: 本发明涉及半导体光催化剂制备技术领域,具体公开了一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法。所述的全光谱响应光催化剂为氮掺杂还原氧化石墨烯负载二氧化钼的复合物,所述负载二氧化钼的质量占比为90%‑99.9%。本发明以钼酸盐、氧化石墨烯、燃料和助燃剂等为原料,通过溶液燃烧法得到前驱体,再在还原气氛下热处理,制备得到一种新型的具有全谱光响应范围的光催化剂,即二氧化钼/氮掺杂还原氧化石墨烯(N‑rGO),二者复合增强了光催化剂的吸附性,进一步提高光催化剂催化效率。该全光谱响应光催化剂在紫外、可见和近红外光辐照下光催化降解去除有机染料,在处理有机染料水污染方面具有广阔的应用前景。
-
公开(公告)号:CN110526305A
公开(公告)日:2019-12-03
申请号:CN201910773095.3
申请日:2019-08-21
Applicant: 南昌大学
Abstract: 本发明涉及材料的合成技术和应用技术领域,具体公开了一种硫化镍/氢氧化镍花状纳米复合物的制备方法及其应用。本发明基于溶度积(Ksp)大的物质在特定离子溶液中自发转化为Ksp小的物质这一原理,通过两次的离子交换反应,将沉淀法得到的氢氧化镁纳米花转化为三维结构的硫化镍/氢氧化镍纳米复合物,具有设备要求低,条件温和,合成产率高,生产成本低廉,绿色环保的特点,非常适合于工业化制备。该制备方法所制得的硫化镍/氢氧化镍花状纳米复合材料用于制备超级电容器的电极。
-
公开(公告)号:CN106311223B
公开(公告)日:2019-02-01
申请号:CN201610670705.3
申请日:2016-08-16
Applicant: 南昌大学
Abstract: 一种贵金属/石墨烯纳米复合材料的制备方法,包括以下步骤:(1)根据贵金属在石墨烯上的负载量以及目标产物制备量,称取相应量贵金属可溶性化合物溶于少量水中,加入相应量体积的浓度为0.5~5 g/L的氧化石墨烯水分散液中;(2)在步骤(1)分散液中加入适量有机燃料和硝酸铵,搅拌并超声15~90分钟;(3)将步骤(2)的混合分散液加热浓缩至粘稠,放入温度为300~900℃的加热炉内引燃,燃烧完后,冷却至室温,洗涤干燥。本发明合成时间短,实施简单,无需添加有毒有害还原剂或稳定剂,铂纳米粒子粒径均匀可控,在石墨烯上分散性均匀,是一种快速、高效、易于工业化制备铂/石墨烯纳米复合材料的新方法。
-
公开(公告)号:CN108658059A
公开(公告)日:2018-10-16
申请号:CN201810407429.0
申请日:2018-05-02
Applicant: 南昌大学
IPC: C01B32/184 , C01G41/02
Abstract: 一种三氧化钨/氮掺杂石墨烯复合物的制备方法,包括以下步骤:根据目标产物的制备量及其中三氧化钨的含量,称取相应量的钨酸铵与适量的硝酸铵和有机燃料,溶于少量水中,加入相应体积的浓度为0.5~5g/L的氧化石墨烯水溶胶中,经搅拌超声得到均匀的混合分散液;(2)将步骤(1)得到的分散液加热浓缩至粘稠,放入温度为300~900℃的加热炉内引燃,燃烧完成后,得到固体产物,即得三氧化钨/氮掺杂石墨烯复合物。本发明合成温度低、时间短、设备简单、成本低廉、高效率、高产率、易于工业化制备。
-
公开(公告)号:CN108609658A
公开(公告)日:2018-10-02
申请号:CN201810407447.9
申请日:2018-05-02
Applicant: 南昌大学
IPC: C01G41/02 , C01B32/184
CPC classification number: C01G41/02 , C01B32/184 , C01P2002/72 , C01P2004/03 , C01P2004/61
Abstract: 一种还原氧化钨/氮掺杂石墨烯复合物的制备方法,包括以下步骤:(1)根据目标产物的制备量及其还原氧化钨的含量,称取偏钨酸铵与适量的硝酸铵和有机燃料,溶于少量水中,加入浓度为0.5~5g/L的氧化石墨烯水溶胶中,搅拌超声得混合分散液;(2)将分散液加热浓缩至粘稠,放入温度为300~900℃的加热炉内引燃,燃烧完成后,得到燃烧产物;(3)将燃烧产物,置于500~800℃的有氢气与氮气混合气体的气氛炉中,高温还原,冷却至室温后,收集固体产物,即得还原氧化钨/氮掺杂石墨烯复合物。本发明合成设备简单,成本低廉,高效率、高产率,同时生成的还原氧化钨形貌均一,在石墨烯上均匀分散,易于工业化生产。
-
公开(公告)号:CN108565434A
公开(公告)日:2018-09-21
申请号:CN201810407446.4
申请日:2018-05-02
Applicant: 南昌大学
IPC: H01M4/36
Abstract: 一种二硫化钨/氮硫共掺杂石墨烯复合物的制备方法,(1)根据目标产物的制备量及其中二硫化钨含量,称取钨酸铵、硝酸铵和有机燃料,溶于少量水中,加入浓度为0.5~5g/L的氧化石墨烯水溶胶中,搅拌超声得混合分散液;(2)将分散液加热浓缩至粘稠,放入300~900℃的加热炉内引燃,燃烧完成后,得到固体产物;(3)在固体产物中,加入硫源化合物,混合,得到混合物;(4)将步骤(3)得到的混合物,置于500~1100℃的通有氮气或氩气的气氛炉中,硫化30~180分钟,冷却至室温,收集固体产物,即得二硫化钨/氮硫共掺杂石墨烯复合物。本发明合成设备简单,成本低廉,高效率、高产率,易于工业化。
-
-
-
-
-
-
-
-
-