-
公开(公告)号:CN107169997B
公开(公告)日:2020-04-21
申请号:CN201710399189.X
申请日:2017-05-31
Applicant: 上海大学
Abstract: 本公开内容涉及一种面向夜间环境下的背景减除算法,该方法包括接收用于AMBER的背景模型以及当前帧;利用LBSP算子并根据像素分类阈值将所述当前帧的像素位置分类为背景点类和前景点类;将所述前景点类进一步分类为感兴趣的目标以及闪烁像素;以及针对被分类为闪烁像素的像素位置学习关联区域并根据关联区域的学习结果动态更新所述像素分类阈值和所述背景模型的更新率。依据本公开内容的背景减除方法利用原AMBER背景减除方法中的背景模型并将LBSP算子引入像素分类阶段,进而通过学习关联区域并利用学习结果动态调整特定的像素位置及其周边的像素位置的像素分类阈值及背景模型的更新率,从而使得应用在夜间拍摄的视频序列中时能够获得更为精确的检测结果。
-
公开(公告)号:CN107169997A
公开(公告)日:2017-09-15
申请号:CN201710399189.X
申请日:2017-05-31
Applicant: 上海大学
Abstract: 本公开内容涉及一种面向夜间环境下的背景减除算法,该方法包括接收用于AMBER的背景模型以及当前帧;利用LBSP算子并根据像素分类阈值将所述当前帧的像素位置分类为背景点类和前景点类;将所述前景点类进一步分类为感兴趣的目标以及闪烁像素;以及针对被分类为闪烁像素的像素位置学习关联区域并根据关联区域的学习结果动态更新所述像素分类阈值和所述背景模型的更新率。依据本公开内容的背景减除方法利用原AMBER背景减除方法中的背景模型并将LBSP算子引入像素分类阶段,进而通过学习关联区域并利用学习结果动态调整特定的像素位置及其周边的像素位置的像素分类阈值及背景模型的更新率,从而使得应用在夜间拍摄的视频序列中时能够获得更为精确的检测结果。
-