-
公开(公告)号:CN114329615B
公开(公告)日:2024-07-09
申请号:CN202210085151.6
申请日:2022-01-25
Applicant: 东北大学
IPC: G06F21/62 , G06F21/60 , G06F18/241 , G16H50/80
Abstract: 本发明提供一种基于改进贝叶斯网络的传染病密切接触者排查方法,首先搜集所有用户的行程信息和表征身体状况的体征参数;然后根据解密后的行程信息确定患者的密切接触者;最后对所有密切接触者是否被感染进行排查。本发明使用加密技术对用户的数据进行加密,实现密文数据下用户密切接触者的查找以及健康状态的预测,保护用户的隐私。同时,利用同态加密的特性,首先设计了一种保护用户隐私的密切接触者查找方案,在不解密用户的明文数据的情况下寻找密切接触者。其次构建了一个能够在加密环境下进行分类的朴素贝叶斯分类模型,对用户的健康状态进行分类,在不泄漏用户的体征数据的情况下完成对用户健康状态的分类,充分保护用户的隐私。
-
公开(公告)号:CN114329615A
公开(公告)日:2022-04-12
申请号:CN202210085151.6
申请日:2022-01-25
Applicant: 东北大学
Abstract: 本发明提供一种基于改进贝叶斯网络的传染病密切接触者排查方法,首先搜集所有用户的行程信息和表征身体状况的体征参数;然后根据解密后的行程信息确定患者的密切接触者;最后对所有密切接触者是否被感染进行排查。本发明使用加密技术对用户的数据进行加密,实现密文数据下用户密切接触者的查找以及健康状态的预测,保护用户的隐私。同时,利用同态加密的特性,首先设计了一种保护用户隐私的密切接触者查找方案,在不解密用户的明文数据的情况下寻找密切接触者。其次构建了一个能够在加密环境下进行分类的朴素贝叶斯分类模型,对用户的健康状态进行分类,在不泄漏用户的体征数据的情况下完成对用户健康状态的分类,充分保护用户的隐私。
-