-
公开(公告)号:CN105354988B
公开(公告)日:2018-02-27
申请号:CN201510920979.9
申请日:2015-12-11
Applicant: 东北大学
Abstract: 本发明提出一种基于机器视觉的驾驶员疲劳驾驶检测系统及检测方法,属于机器视觉、机器学习技术领域,该系统属于非侵入式检测系统,在检测时通过摄像头采集所需信息,不影响驾驶员的正常驾驶,且设备价格低、体积小,仅需在车内安装蓝牙摄像头,在手机内安装app软件,便可实现对驾驶员的疲劳检测;本系统采集信息方便易行,使用时仅需外加摄像头即可适应任何车型及路况,拥有一致的疲劳判断标准和较高的疲劳判断准确率;本系统综合眼部、嘴部和脸部疲劳特征,提高了在复杂的驾驶环境下疲劳判断的准确率,并结合机器学习根据驾驶员的反馈来快速更新系统自身参数以适应不同驾驶员自身的不同特点,系统训练时间短,计算速度快,实时性强。
-
公开(公告)号:CN105354988A
公开(公告)日:2016-02-24
申请号:CN201510920979.9
申请日:2015-12-11
Applicant: 东北大学
CPC classification number: G08B21/06 , G06K9/00281 , G06K9/00845
Abstract: 本发明提出一种基于机器视觉的驾驶员疲劳驾驶检测系统及检测方法,属于机器视觉、机器学习技术领域,该系统属于非侵入式检测系统,在检测时通过摄像头采集所需信息,不影响驾驶员的正常驾驶,且设备价格低、体积小,仅需在车内安装蓝牙摄像头,在手机内安装app软件,便可实现对驾驶员的疲劳检测;本系统采集信息方便易行,使用时仅需外加摄像头即可适应任何车型及路况,拥有一致的疲劳判断标准和较高的疲劳判断准确率;本系统综合眼部、嘴部和脸部疲劳特征,提高了在复杂的驾驶环境下疲劳判断的准确率,并结合机器学习根据驾驶员的反馈来快速更新系统自身参数以适应不同驾驶员自身的不同特点,系统训练时间短,计算速度快,实时性强。
-