-
公开(公告)号:CN109034186B
公开(公告)日:2022-05-24
申请号:CN201810595182.X
申请日:2018-06-11
Applicant: 东北大学秦皇岛分校
IPC: G06K9/62
Abstract: 本发明涉及一种建立DA‑RBM分类器模型的方法,所述方法包括如下步骤:获取源域数据Xs、与源域数据Xs对应的标签Ys、目标域数据XT以及标签YT;初始化RBM模型参数,将数据Xs、XT输入到RBM网络中,求出一阶特征;将所述一阶特征作为下一阶网络的输入,进行RBM训练;将RBM的隐层输出Hs、HT输入到softmax回归层进行分类;在RBM隐层输出上使用MMD进行源域数据和目标域数据分布的约束;在RBM模型的顶层分类层中使用MMD进行预测结果的约束;构建模型的总代价函数J(θ),通过优化所述总代价函数来优化分类器模型的参数。本发明所建模型能够对跨域数据进行有效识别。
-
公开(公告)号:CN109034186A
公开(公告)日:2018-12-18
申请号:CN201810595182.X
申请日:2018-06-11
Applicant: 东北大学秦皇岛分校
IPC: G06K9/62
CPC classification number: G06K9/6268 , G06K9/6256
Abstract: 本发明涉及一种建立DA‑RBM分类器模型的方法,所述方法包括如下步骤:获取源域数据Xs、与源域数据Xs对应的标签Ys、目标域数据XT以及标签YT;初始化RBM模型参数,将数据Xs、XT输入到RBM网络中,求出一阶特征;将所述一阶特征作为下一阶网络的输入,进行RBM训练;将RBM的隐层输出Hs、HT输入到softmax回归层进行分类;在RBM隐层输出上使用MMD进行源域数据和目标域数据分布的约束;在RBM模型的顶层分类层中使用MMD进行预测结果的约束;构建模型的总代价函数J(θ),通过优化所述总代价函数来优化分类器模型的参数。本发明所建模型能够对跨域数据进行有效识别。
-