-
公开(公告)号:CN106680238B
公开(公告)日:2019-09-06
申请号:CN201710009518.5
申请日:2017-01-06
Applicant: 东北大学秦皇岛分校
IPC: G01N21/3563
Abstract: 本发明涉及一种基于红外光谱分析物质成分含量的方法,包括根据源域红外光谱数据和与所述源域红外光谱数据对应的源域物质成分含量建立第一回归模型,求取所述第一回归模型中的参数;获取目标域红外光谱数据,建立目标域红外光谱数据与源域红外光谱数据之间的转移模型,求取所述转移模型中的参数;根据所述目标域红外光谱数据、所述转移模型,利用所述第一回归模型获取与所述目标域红外光谱数据对应的目标域物质成分含量。本发明的分析方法结合迁移学习中的特征迁移方法和偏最小二乘算法,实现目标域到源域光谱特征空间的变换,不但可以去除冗余信息,提高转移的准确性,而且可以在很大程度上降低了转移过程的计算量。
-
公开(公告)号:CN106596450B
公开(公告)日:2019-04-05
申请号:CN201710009517.0
申请日:2017-01-06
Applicant: 东北大学秦皇岛分校
IPC: G01N21/35
Abstract: 本发明涉及一种基于红外光谱分析物质成分含量的增量式方法,包括以下步骤:根据源域红外光谱数据和源域物质成分含量建立第一回归模型;获取目标域标准样本,建立目标域红外光谱标准数据与源域红外光谱数据之间的转移模型;根据所述第一回归模型和所述转移模型建立第二回归模型;获取目标域红外光谱增量数据和目标域物质成分含量增量数据,利用第二回归模型对所述目标域红外光谱增量数据进行筛选,如果满足要求则保留;直至被保留的数量达到阈值,利用所述新目标域标准样本,获取新转移模型和新第二回归模型;获取目标域红外光谱测试数据,根据所述目标域红外光谱测试数据和所述新第二回归模型获取目标域物质成分含量。效率高。
-
公开(公告)号:CN106680238A
公开(公告)日:2017-05-17
申请号:CN201710009518.5
申请日:2017-01-06
Applicant: 东北大学秦皇岛分校
IPC: G01N21/3563
Abstract: 本发明涉及一种基于红外光谱分析物质成分含量的方法,包括根据源域红外光谱数据和与所述源域红外光谱数据对应的源域物质成分含量建立第一回归模型,求取所述第一回归模型中的参数;获取目标域红外光谱数据,建立目标域红外光谱数据与源域红外光谱数据之间的转移模型,求取所述转移模型中的参数;根据所述目标域红外光谱数据、所述转移模型,利用所述第一回归模型获取与所述目标域红外光谱数据对应的目标域物质成分含量。本发明的分析方法结合迁移学习中的特征迁移方法和偏最小二乘算法,实现目标域到源域光谱特征空间的变换,不但可以去除冗余信息,提高转移的准确性,而且可以在很大程度上降低了转移过程的计算量。
-
公开(公告)号:CN106596450A
公开(公告)日:2017-04-26
申请号:CN201710009517.0
申请日:2017-01-06
Applicant: 东北大学秦皇岛分校
IPC: G01N21/35
CPC classification number: G01N21/35
Abstract: 本发明涉及一种基于红外光谱分析物质成分含量的增量式方法,包括以下步骤:根据源域红外光谱数据和源域物质成分含量建立第一回归模型;获取目标域标准样本,建立目标域红外光谱标准数据与源域红外光谱数据之间的转移模型;根据所述第一回归模型和所述转移模型建立第二回归模型;获取目标域红外光谱增量数据和目标域物质成分含量增量数据,利用第二回归模型对所述目标域红外光谱增量数据进行筛选,如果满足要求则保留;直至被保留的数量达到阈值,利用所述新目标域标准样本,获取新转移模型和新第二回归模型;获取目标域红外光谱测试数据,根据所述目标域红外光谱测试数据和所述新第二回归模型获取目标域物质成分含量。效率高。
-
-
-