-
公开(公告)号:CN108181107B
公开(公告)日:2019-08-30
申请号:CN201810031877.5
申请日:2018-01-12
Applicant: 东北电力大学
IPC: G01M13/045 , G06F17/14
Abstract: 本发明是一种计及多分类目标的风电机组轴承机械故障诊断方法,其特点是,包括风电机组轴承振动信号采集、风电机组轴承振动信号处理、风电机组轴承振动信号特征提取、风电机组轴承振动信号特征选择、层次化混合分类器对断路器状态进行识别等步骤,具有科学合理,适应性强,实用价值高,能够准确识别故障的避免现有方法容易将训练样本中不包含的新故障程度或者新故障类型样本误识别为正常状态。
-
公开(公告)号:CN108181107A
公开(公告)日:2018-06-19
申请号:CN201810031877.5
申请日:2018-01-12
Applicant: 东北电力大学
Abstract: 本发明是一种计及多分类目标的风电机组轴承机械故障诊断方法,其特点是,包括风电机组轴承振动信号采集、风电机组轴承振动信号处理、风电机组轴承振动信号特征提取、风电机组轴承振动信号特征选择、层次化混合分类器对断路器状态进行识别等步骤,具有科学合理,适应性强,实用价值高,能够准确识别故障的避免现有方法容易将训练样本中不包含的新故障程度或者新故障类型样本误识别为正常状态。
-
公开(公告)号:CN105241643B
公开(公告)日:2017-08-08
申请号:CN201510599527.5
申请日:2015-09-19
Applicant: 东北电力大学
Abstract: 本发明是一种采用HS变换和单类支持向量机的高压断路器机械状态监测方法,其特点是,包括高压断路器振动信号采集、将振动信号利用HS变换进行处理、振动信号特征提取和单类支持向量机判断断路器机械状态是否正常等步骤。与以往的高压断路器机械状态监测方法相比,本方法中使用的HS变换方法具有较高的抗噪性和鲁棒性,而且相对容易在实际工程环境下实现。采用单类支持向量机方法判断高压断路器机械状态是否正常,不依赖各种故障样本信号,只用一类正常振动信号样本即可完成分类器的训练,具有科学合理,实用性强,推广应用价值较高等优点。
-
公开(公告)号:CN105241643A
公开(公告)日:2016-01-13
申请号:CN201510599527.5
申请日:2015-09-19
Applicant: 东北电力大学
Abstract: 本发明是一种采用HS变换和单类支持向量机的高压断路器机械状态监测方法,其特点是,包括高压断路器振动信号采集、将振动信号利用HS变换进行处理、振动信号特征提取和单类支持向量机判断断路器机械状态是否正常等步骤。与以往的高压断路器机械状态监测方法相比,本方法中使用的HS变换方法具有较高的抗噪性和鲁棒性,而且相对容易在实际工程环境下实现。采用单类支持向量机方法判断高压断路器机械状态是否正常,不依赖各种故障样本信号,只用一类正常振动信号样本即可完成分类器的训练,具有科学合理,实用性强,推广应用价值较高等优点。
-
-
-