基于机器视觉和深度学习的光伏组件EL缺陷检测系统

    公开(公告)号:CN119273692A

    公开(公告)日:2025-01-07

    申请号:CN202411805885.2

    申请日:2024-12-10

    Inventor: 丁盛 陈从颜

    Abstract: 本发明公开了基于机器视觉和深度学习的光伏组件EL缺陷检测系统,属于光伏组件技术领域,包括图像采集模块、图像处理模块、模型训练模块、测试优化模块、缺陷检测模块及数据管理模块。本发明解决了现有的光伏组件EL缺陷检测不能对光伏组件EL缺陷进行较好地定位和分类,不能有效识别各种类型的光伏组件EL缺陷,使得检测准确性低,且不能快速处理大量的光伏组件EL缺陷图像,使得检测时间长,缺陷检测效率低的问题,本发明可对光伏组件EL缺陷进行较好地定位和分类,能有效识别各种类型的光伏组件EL缺陷,使得检测准确性高,且能快速处理大量的光伏组件EL缺陷图像,使得检测时间短,可提升缺陷检测效率。

    基于机器视觉和深度学习的光伏组件EL缺陷检测系统

    公开(公告)号:CN119273692B

    公开(公告)日:2025-05-06

    申请号:CN202411805885.2

    申请日:2024-12-10

    Inventor: 丁盛 陈从颜

    Abstract: 本发明公开了基于机器视觉和深度学习的光伏组件EL缺陷检测系统,属于光伏组件技术领域,包括图像采集模块、图像处理模块、模型训练模块、测试优化模块、缺陷检测模块及数据管理模块。本发明解决了现有的光伏组件EL缺陷检测不能对光伏组件EL缺陷进行较好地定位和分类,不能有效识别各种类型的光伏组件EL缺陷,使得检测准确性低,且不能快速处理大量的光伏组件EL缺陷图像,使得检测时间长,缺陷检测效率低的问题,本发明可对光伏组件EL缺陷进行较好地定位和分类,能有效识别各种类型的光伏组件EL缺陷,使得检测准确性高,且能快速处理大量的光伏组件EL缺陷图像,使得检测时间短,可提升缺陷检测效率。

Patent Agency Ranking