-
公开(公告)号:CN112434159B
公开(公告)日:2024-08-02
申请号:CN202011286949.4
申请日:2020-11-17
Applicant: 东南大学
IPC: G06F16/35 , G06F40/242 , G06N3/0442 , G06N3/084
Abstract: 本发明公开了一种利用深度神经网络进行论文多标签分类的方法,该方法将多标签分类视为标签序列生成过程;方法分为输入序列特征学习阶段和标签序列生成(预测)阶段;该方法将多标签分类视为标签序列生成过程;方法分为输入序列特征学习阶段和标签序列生成(预测)阶段;其中在所述输入序列特征学习阶段,本发明根据论文文本序列,利用双向长短时记忆网络生成特征向量序列;在所述标签序列生成阶段,将由特征向量序列构成的上下文向量和上一时刻的标签嵌入向量输入单向长短时记忆网络,来预测该论文可能所属的下一个标签。模型通过优化后的梯度下降算法进行迭代训练,最终使用训练好的模型,结合Beam Search算法对论文所属类别进行多标签分类。
-
公开(公告)号:CN112434159A
公开(公告)日:2021-03-02
申请号:CN202011286949.4
申请日:2020-11-17
Applicant: 东南大学
IPC: G06F16/35 , G06F40/242 , G06N3/04
Abstract: 本发明公开了一种利用深度神经网络进行论文多标签分类的方法,该方法将多标签分类视为标签序列生成过程;方法分为输入序列特征学习阶段和标签序列生成(预测)阶段;该方法将多标签分类视为标签序列生成过程;方法分为输入序列特征学习阶段和标签序列生成(预测)阶段;其中在所述输入序列特征学习阶段,本发明根据论文文本序列,利用双向长短时记忆网络生成特征向量序列;在所述标签序列生成阶段,将由特征向量序列构成的上下文向量和上一时刻的标签嵌入向量输入单向长短时记忆网络,来预测该论文可能所属的下一个标签。模型通过优化后的梯度下降算法进行迭代训练,最终使用训练好的模型,结合Beam Search算法对论文所属类别进行多标签分类。
-