基于多损失的分解表达学习预测辅助放化疗疗效的方法

    公开(公告)号:CN113808753B

    公开(公告)日:2023-09-26

    申请号:CN202111064734.2

    申请日:2021-09-11

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于多损失的分解表达学习预测辅助放化疗疗效的方法,对现有的同一肿瘤区域放化疗前和放化疗后两个阶段的CT影像,提取放射组学特征。通过多损失的分解表达学习去寻找两个阶段CT影像中肿瘤区域的共享特征和特有特征:首先通过交叉重构损失将影像的特征分解为共享特征和特有特征两个部分,然后通过固有‑变化损失强化分解效果,并基于监督损失使潜在特征具有可分行,再进行总损失计算,并通过梯度更新的方式来最小化总损失,最后得到分离后的特征。对分离后的特征进行融合,并输入到不同的分类器中,从而得到预测模型,并通过预测模型来基于放化疗前患者的肿瘤区域影像进行疗效预测。本发明能够准确的对食管癌患者进行辅助放化疗后疗效。

    基于多损失的分解表达学习预测辅助放化疗疗效的方法

    公开(公告)号:CN113808753A

    公开(公告)日:2021-12-17

    申请号:CN202111064734.2

    申请日:2021-09-11

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于多损失的分解表达学习预测辅助放化疗疗效的方法,对现有的同一肿瘤区域放化疗前和放化疗后两个阶段的CT影像,提取放射组学特征。通过多损失的分解表达学习去寻找两个阶段CT影像中肿瘤区域的共享特征和特有特征:首先通过交叉重构损失将影像的特征分解为共享特征和特有特征两个部分,然后通过固有‑变化损失强化分解效果,并基于监督损失使潜在特征具有可分行,再进行总损失计算,并通过梯度更新的方式来最小化总损失,最后得到分离后的特征。对分离后的特征进行融合,并输入到不同的分类器中,从而得到预测模型,并通过预测模型来基于放化疗前患者的肿瘤区域影像进行疗效预测。本发明能够准确的对食管癌患者进行辅助放化疗后疗效。

Patent Agency Ranking