一种基于双记忆注意力的方面级别情感分类模型及方法

    公开(公告)号:CN109472031B

    公开(公告)日:2021-05-04

    申请号:CN201811337352.0

    申请日:2018-11-09

    Abstract: 本发明公开了一种基于双记忆注意力的方面级别情感分类模型及方法,属于文本情感分类技术领域。本发明所述模型主要包括三个模块:一个由标准的GRU循环神经网络构成的编码器、一个引入前馈神经网络注意力层的GRU循环神经网络解码器和一个Softmax分类器。模型将输入语句看作一个序列,基于句子中方面级别词语位置的注意力,从原始文本序列和编码器的隐藏层状态中分别构建两个记忆模块,通过前馈神经网络注意力层对随机初始化的注意力分布进行微调以捕获语句中的重要情感特征,并基于GRU循环神经网络对序列的学习能力建立编码器‑解码器分类模型,以实现方面级别情感分类能力。本发明可以显著改善文本情感分类的鲁棒性,提高分类正确率。

    一种基于语句信息的方面级情感分类方法

    公开(公告)号:CN110866405A

    公开(公告)日:2020-03-06

    申请号:CN201911113011.X

    申请日:2019-11-14

    Abstract: 本发明公开了一种基于语句信息的方面级情感分类方法,本发明基于语句信息的注意力机制结合句子的整体语义信息捕获给定方面的重要信息,并将整个语句信息加入输出向量表达中,提高了模型处理复杂句子的能力;同时本发明采用基于上下文的注意力机制,与基于位置的注意力机制相比,不仅考虑到了句子的语序信息,还考虑到了单词与方面之间的交互信息,因此能为给定方面构建更合理的定制记忆,使得本发明的分类准确率更高。

Patent Agency Ranking