-
公开(公告)号:CN112164474B
公开(公告)日:2024-05-24
申请号:CN202010671826.6
申请日:2020-07-14
Applicant: 中国矿业大学
IPC: G16H70/40
Abstract: 本发明名为基于自表达模型的药物敏感性预测方法,属机器学习及药物基因组学研究领域。本发明目标是基于已知细胞系对药物的敏感性程度预测未知的细胞系和药物之间的敏感性分数。通过构建细胞系药物对的响应自表达模型,通过某些细胞系药物对的敏感度的线性或仿射组合实现未知敏感性分数的预测。该模型将复杂的优化问题转化为多个子空间,可以实现对包含缺失值数值矩阵的精准且高效的填补,进而实现对细胞系药物响应值的预测。本发明提出的算法能够为个性化精准医疗中重要的药物响应评估环节提供有力的参考。
-
公开(公告)号:CN112164474A
公开(公告)日:2021-01-01
申请号:CN202010671826.6
申请日:2020-07-14
Applicant: 中国矿业大学
IPC: G16H70/40
Abstract: 本发明名为基于自表达模型的药物敏感性预测方法,属机器学习及药物基因组学研究领域。本发明目标是基于已知细胞系对药物的敏感性程度预测未知的细胞系和药物之间的敏感性分数。通过构建细胞系药物对的响应自表达模型,通过某些细胞系药物对的敏感度的线性或仿射组合实现未知敏感性分数的预测。该模型将复杂的优化问题转化为多个子空间,可以实现对包含缺失值数值矩阵的精准且高效的填补,进而实现对细胞系药物响应值的预测。本发明提出的算法能够为个性化精准医疗中重要的药物响应评估环节提供有力的参考。
-