一种离线检测PowerShell恶意软件的方法与系统

    公开(公告)号:CN110362996B

    公开(公告)日:2021-03-09

    申请号:CN201910478849.2

    申请日:2019-06-03

    Abstract: 本发明提供了一种离线的PowerShell恶意软件检测方法与系统。该方法包括的步骤有:利用PowerShell软件的抽象语法树进行PowerShell软件静态混淆去除;提取PowerShell软件的统计特征、结构特征及行为特征作为基础特征;利用距离相关系数对基础特征进行筛选,得到关键特征;利用关键特征训练基于多变量决策树的随机森林检测模型MRF,用于检测PowerShell恶意软件;利用训练好的MRF离线检测PowerShell软件是否恶意,输出检测结果。该系统包括数据预处理模块、特征提取模块、MRF模块、模型训练模块、外部接口调用模块。本发明通过训练基于多变量决策树的随机森林检测模型MRF,实现对PowerShell恶意软件的离线检测。

    一种离线检测PowerShell恶意软件的方法与系统

    公开(公告)号:CN110362996A

    公开(公告)日:2019-10-22

    申请号:CN201910478849.2

    申请日:2019-06-03

    Abstract: 本发明提供了一种离线的PowerShell恶意软件检测方法与系统。该方法包括的步骤有:利用PowerShell软件的抽象语法树进行PowerShell软件静态混淆去除;提取PowerShell软件的统计特征、结构特征及行为特征作为基础特征;利用距离相关系数对基础特征进行筛选,得到关键特征;利用关键特征训练基于多变量决策树的随机森林检测模型MRF,用于检测PowerShell恶意软件;利用训练好的MRF离线检测PowerShell软件是否恶意,输出检测结果。该系统包括数据预处理模块、特征提取模块、MRF模块、模型训练模块、外部接口调用模块。本发明通过训练基于多变量决策树的随机森林检测模型MRF,实现对PowerShell恶意软件的离线检测。

Patent Agency Ranking