-
公开(公告)号:CN105786991B
公开(公告)日:2019-03-15
申请号:CN201610089962.8
申请日:2016-02-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种结合用户情感表达方式的中文情感新词识别方法和系统。其中,该方法包括获取输入文本;基于所述输入文本中词频大于第一预设阈值的字符串,构建候选新词集合;使用中文旧词词库对所述候选新词集合进行过滤;基于统计指标从过滤的候选新词集合中筛选新词,构建新词集合;其中,所述统计指标为构词能力、点互信息、灵活度和邻接熵;基于情感倾向点互信息,从所述新词集合中识别情感新词,构建初始情感新词集合;基于所述输入文本中涉及的用户的情感表达方式,从所述初始情感新词集合中筛选高置信度情感新词,并将其作为所识别的中文情感新词。通过本发明实施例解决了如何提高情感新词识别的精度和灵活度的技术问题。
-
公开(公告)号:CN105740236A
公开(公告)日:2016-07-06
申请号:CN201610066957.5
申请日:2016-01-29
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
CPC classification number: G06F17/2715 , G06F17/2775
Abstract: 本发明公开了一种结合写作特征和序列特征的中文情感新词识别方法和系统。该方法对于输入文本子句,基于情感词的作者写作特征和情感词的序列特征将文本子句表示为各种特征(如:字、词性等)的序列。然后,针对特征表示的文本子句,利用线性链条件随机场模型输出与文本子句对应的情感词标签序列。其中,线性链条件随机场模型基于包含传统情感词的文本训练得到。接着,基于文本子句中字的序列和情感词标签序列,利用有限状态自动机识别文本子句中的情感词,形成情感词集合。最后,利用中文旧词词库对情感词集合进行过滤,将未出现在中文旧词词库中的情感词作为中文情感新词。通过本发明实施例解决了如何提高情感新词识别精度和召回率的技术问题。
-
公开(公告)号:CN105740236B
公开(公告)日:2018-09-07
申请号:CN201610066957.5
申请日:2016-01-29
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明公开了一种结合写作特征和序列特征的中文情感新词识别方法和系统。该方法对于输入文本子句,基于情感词的作者写作特征和情感词的序列特征将文本子句表示为各种特征(如:字、词性等)的序列。然后,针对特征表示的文本子句,利用线性链条件随机场模型输出与文本子句对应的情感词标签序列。其中,线性链条件随机场模型基于包含传统情感词的文本训练得到。接着,基于文本子句中字的序列和情感词标签序列,利用有限状态自动机识别文本子句中的情感词,形成情感词集合。最后,利用中文旧词词库对情感词集合进行过滤,将未出现在中文旧词词库中的情感词作为中文情感新词。通过本发明实施例解决了如何提高情感新词识别精度和召回率的技术问题。
-
公开(公告)号:CN105786991A
公开(公告)日:2016-07-20
申请号:CN201610089962.8
申请日:2016-02-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
CPC classification number: G06F17/30731 , G06F17/2715
Abstract: 本发明公开了一种结合用户情感表达方式的中文情感新词识别方法和系统。其中,该方法包括获取输入文本;基于所述输入文本中词频大于第一预设阈值的字符串,构建候选新词集合;使用中文旧词词库对所述候选新词集合进行过滤;基于统计指标从过滤的候选新词集合中筛选新词,构建新词集合;其中,所述统计指标为构词能力、点互信息、灵活度和邻接熵;基于情感倾向点互信息,从所述新词集合中识别情感新词,构建初始情感新词集合;基于所述输入文本中涉及的用户的情感表达方式,从所述初始情感新词集合中筛选高置信度情感新词,并将其作为所识别的中文情感新词。通过本发明实施例解决了如何提高情感新词识别的精度和灵活度的技术问题。
-
公开(公告)号:CN103810283A
公开(公告)日:2014-05-21
申请号:CN201410058585.2
申请日:2014-02-20
Applicant: 东莞中国科学院云计算产业技术创新与育成中心 , 中国科学院自动化研究所
IPC: G06F17/30
CPC classification number: G06F17/3089
Abstract: 本发明涉及数据采集技术领域,尤其是一种基于用户关联关系的微博数据采集方法。本发明采用网络爬虫的方式对微博平台上包含特定关键词的微博信息进行采集,在采集的过程中以用户之间的关联关系作为微博爬虫的链接,首先根据指定的关键词获取微博爬虫的种子用户,然后通过抓取网页的方式获取用户的微博页面,采集其中包含关键词的微博信息,选取出具有潜力的用户,并同时采集有潜力用户的关联关系以获取微博爬虫的下一级链接,从而实现微博信息的自动搜索与采集。本发明解决了根据关键词在微博平台上自动采集包含该关键词的微博等问题,可用于商务智能、社情舆情、决策评估等领域对特定微博内容的获取。
-
-
-
-