双脉冲波形识别与时间间隔测定方法

    公开(公告)号:CN113340467B

    公开(公告)日:2022-11-04

    申请号:CN202110523144.5

    申请日:2021-05-13

    Abstract: 本发明公开了一种双脉冲波形识别与时间间隔测定方法。本发明首先根据判据判断是否为双脉冲以及大致波形。其次在脉冲信号中对预估的波形进行识别和采集。然后给出用于拟合脉冲信号的函数表达式。最后根据已得出的函数表达式,求出其双峰信号峰峰值以及其对应的时间点、计算时间间隔。利用本发明可更为准确地计算温度传感器对微秒级间隔的双激光脉冲激励的反应时间。这种方法实现简单,计算量小,数据读取正确率很高,有效避免了人眼对复杂信号的识别误差,可用于检测传感器对瞬态高温的测试灵敏度。

    具有一维自由度和气密封的气浮支撑装置

    公开(公告)号:CN110907129B

    公开(公告)日:2021-12-03

    申请号:CN201911200178.X

    申请日:2019-11-29

    Abstract: 本发明公开了一种具有一维自由度和气密封的气浮支撑装置。本发明中的密封罩内设置有模型支座、气浮轴和气浮轴承,构成气浮平台,其中模型支座架设在一对气浮轴之间,气浮轴由气浮轴承支撑,气浮轴与气浮轴承滑动配合,模型支座下方设置有具有一维自由度的航行器模型;气体压力源的出口通过两个精密减压阀分别给气浮轴承和密封罩供气。气浮支撑装置安装于长槽上,长槽开于水洞或风洞实验段的上盖板,且与来流方向垂直;航行器模型穿过长槽并没入流体中;长槽与气浮平台由密封罩将其与实验段密封起来。本发明在避免外力干扰的前提下使得航行器模型在与流向垂直的水平方向具有一维自由度,更好地还原涡脱落以及流体力诱发的受迫振动。

    一种精准分割气泡和自由释放子气泡的方法

    公开(公告)号:CN115317960B

    公开(公告)日:2024-01-26

    申请号:CN202210903626.8

    申请日:2022-07-29

    Abstract: 本发明公开了一种精准分割气泡和自由释放子气泡的方法。本发明是将一对超疏水轨道丝对称置于液体中,两轨道丝之间具有一定的夹角θ且底部间距小于气泡短轴。气泡由轨道丝底部接触被粘在轨道丝之间时,在气泡浮力及超疏水轨道丝粘附力的作用下,气泡沿超疏水轨道丝铺展并向上滑移,位于超疏水轨道丝之间的切丝将气泡割裂为两个子气泡,子气泡继续沿轨道定向滑移,并最终脱离轨道。本发明中涉及的轨道装置及材料制备简单,成本低,可按需操控气泡分裂并且操作灵活方便,无需改变超疏水轨道丝的形状及数量。本发明可以控制分裂后产生的子气泡定向输运,并且子气泡很容易从轨道末端脱离,便于对子气泡的后续处理。

    一种利用尾翼操控气泡自由上升轨迹和速度的方法

    公开(公告)号:CN113333183B

    公开(公告)日:2022-06-14

    申请号:CN202110550774.1

    申请日:2021-05-20

    Abstract: 本发明公开了一种利用尾翼操控气泡自由上升轨迹和速度的方法。本发明中尾翼由主翼以及气泡附着侧翼组成,两者之间的夹角为θ;气泡附着于侧翼后,带动尾翼一起沿一定角度斜向上运动,通过控制气泡直径、尾翼形状、尾翼材质、尾翼展弦比k以及夹角θ的不同来调控气泡上升运动轨迹形态和上升速度。本发明中涉及的尾翼制作简便,成本低廉,在实际应用中无需外部能源输入,仅依靠气泡自身的浮力以及侧翼涂层的壁面粘附力,再通过尾翼操控可实现气泡大幅度的自发横向迁移以及上升速度的控制;不同于超疏水平面与丝轨道,通过尾翼操控气泡输运一定程度上保留了气泡的自由度。

    一种利用尾翼操控气泡自由上升轨迹和速度的方法

    公开(公告)号:CN113333183A

    公开(公告)日:2021-09-03

    申请号:CN202110550774.1

    申请日:2021-05-20

    Abstract: 本发明公开了一种利用尾翼操控气泡自由上升轨迹和速度的方法。本发明中尾翼由主翼以及气泡附着侧翼组成,两者之间的夹角为θ;气泡附着于侧翼后,带动尾翼一起沿一定角度斜向上运动,通过控制气泡直径、尾翼形状、尾翼材质、尾翼展弦比k以及夹角θ的不同来调控气泡上升运动轨迹形态和上升速度。本发明中涉及的尾翼制作简便,成本低廉,在实际应用中无需外部能源输入,仅依靠气泡自身的浮力以及侧翼涂层的壁面粘附力,再通过尾翼操控可实现气泡大幅度的自发横向迁移以及上升速度的控制;不同于超疏水平面与丝轨道,通过尾翼操控气泡输运一定程度上保留了气泡的自由度。

    具有一维自由度和气密封的气浮支撑装置

    公开(公告)号:CN110907129A

    公开(公告)日:2020-03-24

    申请号:CN201911200178.X

    申请日:2019-11-29

    Abstract: 本发明公开了一种具有一维自由度和气密封的气浮支撑装置。本发明中的密封罩内设置有模型支座、气浮轴和气浮轴承,构成气浮平台,其中模型支座架设在一对气浮轴之间,气浮轴由气浮轴承支撑,气浮轴与气浮轴承滑动配合,模型支座下方设置有具有一维自由度的航行器模型;气体压力源的出口通过两个精密减压阀分别给气浮轴承和密封罩供气。气浮支撑装置安装于长槽上,长槽开于水洞或风洞实验段的上盖板,且与来流方向垂直;航行器模型穿过长槽并没入流体中;长槽与气浮平台由密封罩将其与实验段密封起来。本发明在避免外力干扰的前提下使得航行器模型在与流向垂直的水平方向具有一维自由度,更好地还原涡脱落以及流体力诱发的受迫振动。

    一种控制气泡与垂直或倾斜上表面超亲气轨道粘附的方法

    公开(公告)号:CN110776038A

    公开(公告)日:2020-02-11

    申请号:CN201911024242.3

    申请日:2019-10-25

    Abstract: 本发明公开了一种控制气泡与垂直或倾斜上表面超亲气轨道粘附的方法,在无能量输入的条件下,能够按需将气泡粘附在超亲气轨道上,具体是在超亲气轨道近壁区域,布置一个按一定角度α倾斜于重力方向的超亲水导流板;当气泡在自身浮力或向上曳力的作用下接触超亲水导流板后,由于超亲水导流板的超疏气性,气泡将沿着超亲水导流板引导方向运动,直到气泡顺利吸附到超亲气轨道上,并沿超亲气轨道运动;本发明中控制气泡沿直线上浮及上浮速度无能量输入,仅依靠气泡自身浮力,所受曳力及壁面黏附力等因素作用,实现对气泡上浮轨迹的控制。本发明的适用性较强,调整超亲水导流板弯曲弧度大小可以针对不同大小的气泡使用,达到控制不同气泡上浮的目的。

    一种精准分割气泡和自由释放子气泡的方法

    公开(公告)号:CN115317960A

    公开(公告)日:2022-11-11

    申请号:CN202210903626.8

    申请日:2022-07-29

    Abstract: 本发明公开了一种精准分割气泡和自由释放子气泡的方法。本发明是将一对超疏水轨道丝对称置于液体中,两轨道丝之间具有一定的夹角θ且底部间距小于气泡短轴。气泡由轨道丝底部接触被粘在轨道丝之间时,在气泡浮力及超疏水轨道丝粘附力的作用下,气泡沿超疏水轨道丝铺展并向上滑移,位于超疏水轨道丝之间的切丝将气泡割裂为两个子气泡,子气泡继续沿轨道定向滑移,并最终脱离轨道。本发明中涉及的轨道装置及材料制备简单,成本低,可按需操控气泡分裂并且操作灵活方便,无需改变超疏水轨道丝的形状及数量。本发明可以控制分裂后产生的子气泡定向输运,并且子气泡很容易从轨道末端脱离,便于对子气泡的后续处理。

    一种控制气泡与垂直或倾斜上表面超亲气轨道粘附的方法

    公开(公告)号:CN110776038B

    公开(公告)日:2022-07-12

    申请号:CN201911024242.3

    申请日:2019-10-25

    Abstract: 本发明公开了一种控制气泡与垂直或倾斜上表面超亲气轨道粘附的方法,在无能量输入的条件下,能够按需将气泡粘附在超亲气轨道上,具体是在超亲气轨道近壁区域,布置一个按一定角度α倾斜于重力方向的超亲水导流板;当气泡在自身浮力或向上曳力的作用下接触超亲水导流板后,由于超亲水导流板的超疏气性,气泡将沿着超亲水导流板引导方向运动,直到气泡顺利吸附到超亲气轨道上,并沿超亲气轨道运动;本发明中控制气泡沿直线上浮及上浮速度无能量输入,仅依靠气泡自身浮力,所受曳力及壁面黏附力等因素作用,实现对气泡上浮轨迹的控制。本发明的适用性较强,调整超亲水导流板弯曲弧度大小可以针对不同大小的气泡使用,达到控制不同气泡上浮的目的。

    燃气泄漏无人智能激光巡检系统

    公开(公告)号:CN111750281A

    公开(公告)日:2020-10-09

    申请号:CN202010637567.5

    申请日:2020-07-05

    Abstract: 本发明涉及一种燃气泄漏无人智能激光巡检系统。本发明包括巡航小车、六轴机械臂、激光吸收光谱智能传感单元、数据远传模块和云端控制中心。本发明中的巡航小车与六轴机械臂通过数据融合和空间数据解耦获得智能传感单元的精确定位及其姿态重构。激光吸收光谱智能传感单元获得激光吸收光谱信号,用于判断燃气泄漏与否,并通过数据远传模块将监测点的空间信息和泄漏量传至云端控制中心。本发明通过使用六轴机械臂搭载激光吸收光谱智能传感单元来检测燃气管道是否存在泄露,能够检测漏检系统难以涉足的巡检盲点。同时通过云端控制中心对六轴机械臂与六轴机械臂搭载的激光吸收光谱智能传感单元进行控制,收集检测数据,实现高自动化智能检测。

Patent Agency Ranking