-
公开(公告)号:CN106844818B
公开(公告)日:2018-03-30
申请号:CN201610985604.5
申请日:2016-11-09
Applicant: 北京工业大学
IPC: G06F17/50
CPC classification number: G06F17/5018 , G06F17/5086
Abstract: 基于粗糙表面的直齿轮三维接触刚度计算方法,首先采用六面体网格划分,要求齿面上每个正方形网格面积相等;基于有限元法计算光滑齿面接触压力分布,提取接触区节点压强;基于分形理论计算单个正方形网格法向接触刚度,切向接触刚度;计算齿面接触刚度。本发明进一步精确了齿轮接触刚度计算模型,解决了原先计算过程中按照赫兹理论光滑接触的弊端,揭示了粗糙齿面接触过程中粗糙度参数对于齿轮刚度特性的影响规律和计算方法。同时基于有限元的三维接触刚度计算模型,比原先二维计算模型或者计算公式更精确,并且考虑齿轮实际装配和制造过程中误差的影响,从而使齿轮接触刚度更加准确,为齿轮动力学分析奠定了基础。
-
公开(公告)号:CN106844818A
公开(公告)日:2017-06-13
申请号:CN201610985604.5
申请日:2016-11-09
Applicant: 北京工业大学
IPC: G06F17/50
CPC classification number: G06F17/5018 , G06F17/5086
Abstract: 基于粗糙表面的直齿轮三维接触刚度计算方法,首先采用六面体网格划分,要求齿面上每个正方形网格面积相等;基于有限元法计算光滑齿面接触压力分布,提取接触区节点压强;基于分形理论计算单个正方形网格法向接触刚度,切向接触刚度;计算齿面接触刚度。本发明进一步精确了齿轮接触刚度计算模型,解决了原先计算过程中按照赫兹理论光滑接触的弊端,揭示了粗糙齿面接触过程中粗糙度参数对于齿轮刚度特性的影响规律和计算方法。同时基于有限元的三维接触刚度计算模型,比原先二维计算模型或者计算公式更精确,并且考虑齿轮实际装配和制造过程中误差的影响,从而使齿轮接触刚度更加准确,为齿轮动力学分析奠定了基础。
-
公开(公告)号:CN106840877B
公开(公告)日:2019-02-12
申请号:CN201710054471.4
申请日:2017-01-22
Applicant: 北京工业大学
IPC: G01N3/08
Abstract: 本发明公开了一种基于应力的多轴小裂纹全寿命预测方法,涉及多轴疲劳强度理论领域,该算法步骤为:(1)选取最大剪应变范围所在平面为临界面,利用该临界面上的损伤参量来来表征短裂纹扩展驱动力;(2)基于剪切型多轴疲劳损伤参量,建立适用于多轴应力状态下的等效裂纹应力强度因子;(3)通过拟合单轴加载下的短裂纹扩展速率数据,得出单轴短裂纹扩展曲线;(4)对裂纹尖端进行塑性区尺寸修正,通过断裂力学方法计算短裂纹扩展寿命。本方法基可以很好的描述非比例加载对裂纹扩展的影响。结果说明该方法可以较好的预测多轴比例、非比例加载下短裂纹扩展寿命。
-
公开(公告)号:CN108427844A
公开(公告)日:2018-08-21
申请号:CN201810216830.6
申请日:2018-03-16
Applicant: 北京工业大学
IPC: G06F17/50
Abstract: 本发明公开了考虑温度和随机振动载荷的加筋板结构疲劳寿命计算方法,采用Pro/E三维建模软件建立超高音速飞行器加筋板的几何模型;采用ANSYS的热应力分析模块,计算不同表面温度载荷下,加筋板的热温度场和热应力分布;基于模态分析模块,分析得到温度载荷对前六阶模态的影响规律;将ANSYS分析得到的最大应力时域谱以.txt的形式导入matlab软件中,结合Miner线性损伤累计理论和加筋板材料的S-N曲线计算设定工况下的疲劳损伤继而得到加筋板的寿命参数;本发明通过建立加筋板的Proe的几何模型参数、ANSYS模型的热振耦合参数以及matlab的频域分析和PSD分析过程进行整合,从而可以优化一定工况、结构参数和材料属性下加筋板的使用寿命。
-
公开(公告)号:CN106896133A
公开(公告)日:2017-06-27
申请号:CN201710078178.1
申请日:2017-02-14
Applicant: 北京工业大学
IPC: G01N25/20
CPC classification number: G01N25/20
Abstract: 一种基于等温疲劳和蠕变疲劳的多轴热机械疲劳寿命预测方法,涉及机械设计疲劳强度领域。该方法的步骤为:(1)找到最大剪切应变幅所在的平面,即临界面;计算等效温度;求解在一个循环下的等温疲劳损伤;通过应力‑应变本构关系或者迟滞回线获取一个稳定循环载荷下的轴向应力‑时间历程和相应的温度‑时间历程并分割成适当的份数,计算每一份蠕变损伤,累加得到一个稳定循环载荷下的蠕变损伤;确定相位角参数后,计算等温疲劳损伤与蠕变损伤之间的交互损伤;累加得到一个循环载荷下的热机械疲劳损伤。结果说明该方法能较好的预测多轴横幅热机械疲劳寿命。
-
公开(公告)号:CN106896133B
公开(公告)日:2019-04-05
申请号:CN201710078178.1
申请日:2017-02-14
Applicant: 北京工业大学
IPC: G01N25/20
Abstract: 一种基于等温疲劳和蠕变疲劳的多轴热机械疲劳寿命预测方法,涉及机械设计疲劳强度领域。该方法的步骤为:(1)找到最大剪切应变幅所在的平面,即临界面;计算等效温度;求解在一个循环下的等温疲劳损伤;通过应力‑应变本构关系或者迟滞回线获取一个稳定循环载荷下的轴向应力‑时间历程和相应的温度‑时间历程并分割成适当的份数,计算每一份蠕变损伤,累加得到一个稳定循环载荷下的蠕变损伤;确定相位角参数后,计算等温疲劳损伤与蠕变损伤之间的交互损伤;累加得到一个循环载荷下的热机械疲劳损伤。结果说明该方法能较好的预测多轴横幅热机械疲劳寿命。
-
公开(公告)号:CN106840877A
公开(公告)日:2017-06-13
申请号:CN201710054471.4
申请日:2017-01-22
Applicant: 北京工业大学
IPC: G01N3/08
CPC classification number: G01N3/08 , G01N2203/0017 , G01N2203/0066 , G01N2203/025 , G01N2203/0252 , G01N2203/0682
Abstract: 本发明公开了一种基于应力的多轴小裂纹全寿命预测方法,涉及多轴疲劳强度理论领域,该算法步骤为:(1)选取最大剪应变范围所在平面为临界面,利用该临界面上的损伤参量来来表征短裂纹扩展驱动力;(2)基于剪切型多轴疲劳损伤参量,建立适用于多轴应力状态下的等效裂纹应力强度因子;(3)通过拟合单轴加载下的短裂纹扩展速率数据,得出单轴短裂纹扩展曲线;(4)对裂纹尖端进行塑性区尺寸修正,通过断裂力学方法计算短裂纹扩展寿命。本方法基可以很好的描述非比例加载对裂纹扩展的影响。结果说明该方法可以较好的预测多轴比例、非比例加载下短裂纹扩展寿命。
-
-
-
-
-
-