一种基于深度学习的连续相位调制信号解调方法

    公开(公告)号:CN116132235B

    公开(公告)日:2024-07-05

    申请号:CN202310114350.X

    申请日:2023-01-29

    Abstract: 本发明公开了一种基于深度学习的连续相位调制信号解调方法,属于通信领域;首先,收集不同调制类型的连续相位的调制信号,划分为训练样本或测试样本;然后,搭建神经网络模型,输入训练样本进行模型训练;所述神经网络模型包括依次串连的三层卷积层和全连接层;每层卷积层包含多条并行的卷积分支;对于每个样本,依次利用各卷积层中的八条卷积分支进行并行特征提取和融合,得到特征图输入给全连接层;多次迭代并调整学习率直至模型参数达到最优;最后,将待解调的调制信号输入训练好的神经网络模型中进行自动解调;本发明在GMSK下的解调性能与传统MLSD方法的理论性能接近,在FSK下的解调性能超越了传统MLSD方法的解调性能,模型泛化能力与鲁棒性更强。

    一种基于深度学习的连续相位调制信号解调方法

    公开(公告)号:CN116132235A

    公开(公告)日:2023-05-16

    申请号:CN202310114350.X

    申请日:2023-01-29

    Abstract: 本发明公开了一种基于深度学习的连续相位调制信号解调方法,属于通信领域;首先,收集不同调制类型的连续相位的调制信号,划分为训练样本或测试样本;然后,搭建神经网络模型,输入训练样本进行模型训练;所述神经网络模型包括依次串连的三层卷积层和全连接层;每层卷积层包含多条并行的卷积分支;对于每个样本,依次利用各卷积层中的八条卷积分支进行并行特征提取和融合,得到特征图输入给全连接层;多次迭代并调整学习率直至模型参数达到最优;最后,将待解调的调制信号输入训练好的神经网络模型中进行自动解调;本发明在GMSK下的解调性能与传统MLSD方法的理论性能接近,在FSK下的解调性能超越了传统MLSD方法的解调性能,模型泛化能力与鲁棒性更强。

Patent Agency Ranking