-
公开(公告)号:CN113242225A
公开(公告)日:2021-08-10
申请号:CN202110484817.0
申请日:2021-04-30
Applicant: 北京理工大学
Abstract: 本发明公开了一种基于流数据的黎曼流形结构的DDoS攻击检测方法。本发明首先对流数据进行数学建模,对高维度的、复杂的流数据特征进行预处理,最终以“做功”作为描述流数据的唯一特征;然后,使用傅里叶变换得到“做功”的频域信息以及计算“做功”的信息熵作为机器学习的输入特征。本发明方法是一种轻量级的检测方法,其用于训练的数据特征少,对DDoS攻击的检测速度快;同时,实现该方法的技术难度小,但准确率高。
-
公开(公告)号:CN110598417B
公开(公告)日:2021-02-12
申请号:CN201910838321.1
申请日:2019-09-05
Applicant: 北京理工大学
IPC: G06F21/57 , G06F16/901
Abstract: 本发明公开了一种基于图挖掘的软件漏洞检测方法,属于软件技术领域,能够解决数据集中的数据冗余问题,并有效提高软件漏洞检测的准确率和精度。包括如下步骤:步骤1、分析软件的源代码,按照源代码中的功能模块划分代数构件,以代数构件为节点,代数构件之间的连接关系为边,生成软件系统拓扑图。将软件系统拓扑图按照功能划分为子图,所有子图构成一个图数据库G。步骤2、采用bitcode编码方法对子图中的每一条边在整个图数据库G中出现的情况进行编码表示,构建边层次编码结构BitEdgeLevel。步骤3、对所有簇进行层内扩展,通过层内扩展获得所有的父子关系。步骤4、构建BitEdgeTree搜索树。步骤5、执行图匹配检测漏洞算法。
-
公开(公告)号:CN111767547A
公开(公告)日:2020-10-13
申请号:CN202010585822.6
申请日:2020-06-24
Applicant: 北京理工大学
Abstract: 本发明提供一种基于复杂网络社团的软件漏洞检测方法,首先将软件系统抽象为复杂网络图,再对复杂网络图进行预处理得到重构网络图,然后采用社团划分算法,将重构网络图转换为若干个社团,既保存了各个社团中的中心节点构成的中心节点集,又保存了整个复杂网络图中的社团集;同时,由于中心节点的重要程度可以衡量一个社团在整个复杂网络图中的重要程度,因此,本发明基于nRank节点排序算法,对中心节点集进行排序,从而实现对整个复杂网络图中的若干个社团进行排序;最后,本发明将得到的按序排列的社团与预处理后的重构网络图进行图匹配,从而找到软件系统中可能潜在的漏洞,有效地提高算法准确度和时效。
-
公开(公告)号:CN110602082A
公开(公告)日:2019-12-20
申请号:CN201910852624.9
申请日:2019-09-10
Applicant: 北京理工大学
Abstract: 本发明公开了一种基于代数拓扑的网络攻击行为效用计算方法,通过采用代数拓扑理论,建立了正在发生或已经发生的网络攻击行为的准确模型,即建立了网络攻击子行为的胞腔复形结构及网络攻击行为的微分流形,再采用微分流形测地线的数学理论为计算依据,实现了无需人为评分的介入即可对网络攻击行为的效用进行定量的评估。
-
公开(公告)号:CN110012037A
公开(公告)日:2019-07-12
申请号:CN201910425827.X
申请日:2019-05-21
Applicant: 北京理工大学
IPC: H04L29/06
Abstract: 本发明公开了基于不确定性感知攻击图的网络攻击预测模型构建方法,一、在攻击图上添加漏洞被攻击的不确定性概率,获得不确定性感知攻击图;二、对网络系统中的服务受到攻击时入侵检测系统生成的警报信息进行关联,生成警报关联图,并利用警报信息所对应的响应决策生成入侵响应图;三、根据警报的源主机地址、警报的目的主机地址、警报的源端口号、警报的目的端口号、警报传输所使用的协议和产生警报所对应的漏洞编号,对不确定性概率进行改进;四、通过入侵响应图中响应决策之间的关联关系以及响应的代价对不确定性概率进行改进;五、根据不确定性概率获得服务被攻击的概率,从而得到预测攻击模型;本发明能够实现准确全面的预测网络攻击。
-
公开(公告)号:CN108989090B
公开(公告)日:2020-11-20
申请号:CN201810649324.6
申请日:2018-06-22
Applicant: 北京理工大学
IPC: H04L12/24
Abstract: 本发明公开了一种基于微分流形的网络状态模型构建方法和网络状态评估方法。使用本发明能够使网络安全评估不再依赖于传统的拓扑路径,从而使得计算结果具有更好的完整性和计算可扩展性。本发明将网络系统状态抽象为高维的微分流形,对网络状态的刻画更为细致;流形中各点所对应的网络状态由网络系统各设备节点的所有属性展现,从网络系统各设备节点的属性信息出发进行评估,更能客观地体现网络的状态,能覆盖网络系统的全部节点及其属性信息,确保了完整性和全面性,计算可扩性好。同时,本发明不需要考虑节点之间的路径问题,不存在路径爆炸问题。
-
公开(公告)号:CN111522743B
公开(公告)日:2021-10-22
申请号:CN202010303294.0
申请日:2020-04-17
Applicant: 北京理工大学
IPC: G06F11/36
Abstract: 本发明提供一种基于梯度提升树支持向量机的软件缺陷预测方法,本发明不是人工根据先验知识或搜索算法进行组合,而是通过集成学习算法的梯度提升树进行自发的特征组合,然后使用梯度提升树组合而成的独热编码作为二次特征,将二次特征作为支持向量机的输入,对支持向量机算法进行训练,得到基于梯度提升树的支持向量机;也就是说,本发明将两个弱分类器组合成强分类器,进而通过特征组合的方式缓解数据不平衡的问题,在一定程度上提高了分类算法的准确率和精度。
-
公开(公告)号:CN110012037B
公开(公告)日:2020-08-18
申请号:CN201910425827.X
申请日:2019-05-21
Applicant: 北京理工大学
IPC: H04L29/06
Abstract: 本发明公开了基于不确定性感知攻击图的网络攻击预测模型构建方法,一、在攻击图上添加漏洞被攻击的不确定性概率,获得不确定性感知攻击图;二、对网络系统中的服务受到攻击时入侵检测系统生成的警报信息进行关联,生成警报关联图,并利用警报信息所对应的响应决策生成入侵响应图;三、根据警报的源主机地址、警报的目的主机地址、警报的源端口号、警报的目的端口号、警报传输所使用的协议和产生警报所对应的漏洞编号,对不确定性概率进行改进;四、通过入侵响应图中响应决策之间的关联关系以及响应的代价对不确定性概率进行改进;五、根据不确定性概率获得服务被攻击的概率,从而得到预测攻击模型;本发明能够实现准确全面的预测网络攻击。
-
公开(公告)号:CN111522743A
公开(公告)日:2020-08-11
申请号:CN202010303294.0
申请日:2020-04-17
Applicant: 北京理工大学
IPC: G06F11/36
Abstract: 本发明提供一种基于梯度提升树支持向量机的软件缺陷预测方法,本发明不是人工根据先验知识或搜索算法进行组合,而是通过集成学习算法的梯度提升树进行自发的特征组合,然后使用梯度提升树组合而成的独热编码作为二次特征,将二次特征作为支持向量机的输入,对支持向量机算法进行训练,得到基于梯度提升树的支持向量机;也就是说,本发明将两个弱分类器组合成强分类器,进而通过特征组合的方式缓解数据不平衡的问题,在一定程度上提高了分类算法的准确率和精度。
-
公开(公告)号:CN108989090A
公开(公告)日:2018-12-11
申请号:CN201810649324.6
申请日:2018-06-22
Applicant: 北京理工大学
IPC: H04L12/24
Abstract: 本发明公开了一种基于微分流形的网络状态模型构建方法和网络状态评估方法。使用本发明能够使网络安全评估不再依赖于传统的拓扑路径,从而使得计算结果具有更好的完整性和计算可扩展性。本发明将网络系统状态抽象为高维的微分流形,对网络状态的刻画更为细致;流形中各点所对应的网络状态由网络系统各设备节点的所有属性展现,从网络系统各设备节点的属性信息出发进行评估,更能客观地体现网络的状态,能覆盖网络系统的全部节点及其属性信息,确保了完整性和全面性,计算可扩性好。同时,本发明不需要考虑节点之间的路径问题,不存在路径爆炸问题。
-
-
-
-
-
-
-
-
-