-
公开(公告)号:CN107180192B
公开(公告)日:2020-05-29
申请号:CN201710324102.2
申请日:2017-05-09
Applicant: 北京理工大学
Abstract: 本发明公开了一种基于多特征融合的安卓恶意应用程序检测方法和系统,该方法对安卓应用样本进行反编译,获得反编译文件;从反编译文件中提取静态特征;通过在安卓模拟器中运行安卓应用样本提取动态特征;对静态特征和动态特征,使用局部敏感哈希算法的文本哈希映射部分进行特征映射,映射到低维特征空间,从而得到融合后的特征向量;基于融合后的特征向量,利用机器学习分类算法训练得到分类器,利用该分类器进行分类检测。使用本发明能够解决恶意代码稀有样本家族的高维特征分析问题,而且提高了检测准确度。
-
公开(公告)号:CN107180192A
公开(公告)日:2017-09-19
申请号:CN201710324102.2
申请日:2017-05-09
Applicant: 北京理工大学
Abstract: 本发明公开了一种基于多特征融合的安卓恶意应用程序检测方法和系统,该方法对安卓应用样本进行反编译,获得反编译文件;从反编译文件中提取静态特征;通过在安卓模拟器中运行安卓应用样本提取动态特征;对静态特征和动态特征,使用局部敏感哈希算法的文本哈希映射部分进行特征映射,映射到低维特征空间,从而得到融合后的特征向量;基于融合后的特征向量,利用机器学习分类算法训练得到分类器,利用该分类器进行分类检测。使用本发明能够解决恶意代码稀有样本家族的高维特征分析问题,而且提高了检测准确度。
-