通过元学习实现语法改错少样本领域适应的方法及系统

    公开(公告)号:CN112364990B

    公开(公告)日:2021-06-04

    申请号:CN202011183390.2

    申请日:2020-10-29

    Abstract: 本发明公开了一种通过元学习实现语法改错少样本领域适应的方法及系统,该方法包括:构建预训练数据集,其包括二语学习者所写的句子和母语修改者修改后的句子;构建源领域数据集,其包括多个领域的语法改错数据;构建目标领域数据集,其包括验证领域的数据和测试领域的数据;先使用预训练数据集对语法改错模型进行预训练;然后,使用源领域数据集对模型进行元训练;基于目标领域数据集,对元训练后的语法改错模型进行微调,使得调整后的语法改错模型可以对目标领域数据集中的数据进行语法改错的测试。本发明在语法改错系统的基础上,使用元学习技术实现了语法改错在少样本领域的适应,提升了语法改错的性能。

    通过元学习实现语法改错少样本领域适应的方法及系统

    公开(公告)号:CN112364990A

    公开(公告)日:2021-02-12

    申请号:CN202011183390.2

    申请日:2020-10-29

    Abstract: 本发明公开了一种通过元学习实现语法改错少样本领域适应的方法及系统,该方法包括:构建预训练数据集,其包括二语学习者所写的句子和母语修改者修改后的句子;构建源领域数据集,其包括多个领域的语法改错数据;构建目标领域数据集,其包括验证领域的数据和测试领域的数据;先使用预训练数据集对语法改错模型进行预训练;然后,使用源领域数据集对模型进行元训练;基于目标领域数据集,对元训练后的语法改错模型进行微调,使得调整后的语法改错模型可以对目标领域数据集中的数据进行语法改错的测试。本发明在语法改错系统的基础上,使用元学习技术实现了语法改错在少样本领域的适应,提升了语法改错的性能。

Patent Agency Ranking