-
公开(公告)号:CN107316058A
公开(公告)日:2017-11-03
申请号:CN201710450327.2
申请日:2017-06-15
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/629 , G06K9/4604 , G06K9/6227 , G06K9/6256 , G06N3/04
Abstract: 本发明涉及一种通过提高目标分类和定位准确度改善目标检测性能的方法,其主要技术特点是:根据卷积神经网络架构提取图像特征,并选择卷积层前M层输出进行特征融合,形成多特征的特征图;在卷积层M上进行网格划分,在每个网络中预测固定数目和大小的目标候选框;将候选框映射到特征图上进行裁剪,然后将裁剪结果进行多特征连接;将上述结果通过全连接层后,通过Softmax分类算法对图像特征进行分类,并用重叠面积损失函数进行在线迭代回归定位,得到最终目标检测的结果。本发明设计合理,通过卷积神经网络提取特征,并对图像特征进行多层融合,最后使用Softmax分类算法对图像特征进行分类,并采用重叠面积损失函数进行定位,获得了良好的目标检测结果。
-
公开(公告)号:CN106643711A
公开(公告)日:2017-05-10
申请号:CN201611056649.0
申请日:2016-11-25
Applicant: 北京邮电大学
CPC classification number: G01C21/165 , G01C21/206
Abstract: 本发明提供一种基于手持设备的室内定位方法和系统,所述手持设备包括加速度传感器、陀螺仪以及地磁感应器,所述方法包括:S1、基于行人的步数、步长以及角位移获得行人的位置坐标;以及S2、基于室内的磁场地图对所述位置坐标进行定位校正。通过实际场地采集数据与MATLAB平台仿真的验证,本发明的方法可以实现稳定性强的、高精度的室内定位。
-
公开(公告)号:CN107886117A
公开(公告)日:2018-04-06
申请号:CN201711038002.X
申请日:2017-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/6267 , G06K9/3233 , G06K9/342 , G06K9/6288 , G06K2209/21
Abstract: 本发明涉及一种基于多特征提取和多任务融合的目标检测算法,其技术特点是:基于深度学习卷积神经网络架构提取图像特征,提取多层卷积输出结果形成多特征图,在多特征图上提取不同可视野的目标感兴趣区域并进行特征连接;对原图实现语义分割提取目标分割区域结果,并将目标检测结果和目标分割结果在全连接层中通过一定的比例系数进行多任务交叉辅助目标检测;上述结果通过最后的全连接层后,通过组合分类定位损失函数对图像特征进行分类和回归定位,得到最终目标检测的结果。本发明通过深度学习卷积神经网络提取特征、对图像特征进行多组多层融合连接及组合损失函数实现了高精度的目标检测定位和分类,获得了良好的目标检测结果。
-
-