名片识别方法和装置
    1.
    发明授权

    公开(公告)号:CN110135411B

    公开(公告)日:2021-09-10

    申请号:CN201910360584.6

    申请日:2019-04-30

    Abstract: 本发明提出一种名片识别方法和装置,其中,方法包括:获取待识别的名片图像;将名片图像输入至文字检测模型,以得到各文本行区域;其中,文字检测模型,已学习得到图像特征与各文本行区域之间的对应关系;将各文本行区域输入至文字识别模型,以得到各文本行区域对应的名片信息。该方法能够实现基于深度学习的文字检测模型来识别名片图像中的各文本行区域,鲁棒性较强,可以降低因为低质量和噪声数据对文本提取的影响,从而提升该方法的通用性和应用空间。并且,基于深度学习的文字识别模型来对各文本行区域进行端到端的识别,无需进行单字分割,具有更高的准确率,同时也对各种复杂的变化具有更强的识别能力,提升该方法的通用性和识别效果。

    基于注意力机制的交通标志检测方法和装置

    公开(公告)号:CN110135307B

    公开(公告)日:2022-07-01

    申请号:CN201910365006.1

    申请日:2019-04-30

    Abstract: 本申请提出一种基于注意力机制的交通标志检测方法和装置,其中,方法包括:通过获取待检测图像,根据贪心策略算法对待检测图像进行切片,得到符合预设条件的获取至少一个目标检测区域,其中,目标检测区域中包含所有交通标志区域;将至少一个目标检测区域输入预先训练的检测模型,获取与每个目标检测区域对应的候选预测结果,根据非极大抑制算法对所有目标检测区域对应的候选预测结果进行去噪,获取目标预测结果,其中,目标预测结果中包含所述待检测图像中的交通标志类别信息和位置信息。由此,通过预先训练的检测模型对待检测图像进行交通标志检测,提高了交通标志检测的精度值和效率。

    名片识别方法和装置
    3.
    发明授权

    公开(公告)号:CN110135412B

    公开(公告)日:2021-05-11

    申请号:CN201910364062.3

    申请日:2019-04-30

    Abstract: 本申请提出一种名片识别方法和装置,其中,方法包括:通过获取待识别图像中的候选名片区域,根据预设的图像识别算法识别候选名片区域中的多个候选轮廓关键点,根据凸包算法对多个候选轮廓关键点计算获取多条候选边,在多条候选边中选择符合预设条件的多组候选边,并构建与每组候选边分别对应的候选四边形,根据预设算法计算每个候选四边形的置信度,根据置信度确定目标候选四边形,并根据目标候选四边形确定候选名片区域的轮廓关键点,根据轮廓关键点在候选名片区域中确定目标名片区域,并识别目标名片区域中的名片信息。该方法解决了现有技术中对于复杂背景的名片图像进行识别时,识别准确率较低的技术问题,提高了名片识别的精度和准确度。

    名片识别方法和装置
    4.
    发明公开

    公开(公告)号:CN110135412A

    公开(公告)日:2019-08-16

    申请号:CN201910364062.3

    申请日:2019-04-30

    Abstract: 本申请提出一种名片识别方法和装置,其中,方法包括:通过获取待识别图像中的候选名片区域,根据预设的图像识别算法识别候选名片区域中的多个候选轮廓关键点,根据凸包算法对多个候选轮廓关键点计算获取多条候选边,在多条候选边中选择符合预设条件的多组候选边,并构建与每组候选边分别对应的候选四边形,根据预设算法计算每个候选四边形的置信度,根据置信度确定目标候选四边形,并根据目标候选四边形确定候选名片区域的轮廓关键点,根据轮廓关键点在候选名片区域中确定目标名片区域,并识别目标名片区域中的名片信息。该方法解决了现有技术中对于复杂背景的名片图像进行识别时,识别准确率较低的技术问题,提高了名片识别的精度和准确度。

    名片识别方法和装置
    5.
    发明公开

    公开(公告)号:CN110135411A

    公开(公告)日:2019-08-16

    申请号:CN201910360584.6

    申请日:2019-04-30

    Abstract: 本发明提出一种名片识别方法和装置,其中,方法包括:获取待识别的名片图像;将名片图像输入至文字检测模型,以得到各文本行区域;其中,文字检测模型,已学习得到图像特征与各文本行区域之间的对应关系;将各文本行区域输入至文字识别模型,以得到各文本行区域对应的名片信息。该方法能够实现基于深度学习的文字检测模型来识别名片图像中的各文本行区域,鲁棒性较强,可以降低因为低质量和噪声数据对文本提取的影响,从而提升该方法的通用性和应用空间。并且,基于深度学习的文字识别模型来对各文本行区域进行端到端的识别,无需进行单字分割,具有更高的准确率,同时也对各种复杂的变化具有更强的识别能力,提升该方法的通用性和识别效果。

    基于注意力机制的交通标志检测方法和装置

    公开(公告)号:CN110135307A

    公开(公告)日:2019-08-16

    申请号:CN201910365006.1

    申请日:2019-04-30

    Abstract: 本申请提出一种基于注意力机制的交通标志检测方法和装置,其中,方法包括:通过获取待检测图像,根据贪心策略算法对待检测图像进行切片,得到符合预设条件的获取至少一个目标检测区域,其中,目标检测区域中包含所有交通标志区域;将至少一个目标检测区域输入预先训练的检测模型,获取与每个目标检测区域对应的候选预测结果,根据非极大抑制算法对所有目标检测区域对应的候选预测结果进行去噪,获取目标预测结果,其中,目标预测结果中包含所述待检测图像中的交通标志类别信息和位置信息。由此,通过预先训练的检测模型对待检测图像进行交通标志检测,提高了交通标志检测的精度值和效率。

Patent Agency Ranking