-
公开(公告)号:CN107453814A
公开(公告)日:2017-12-08
申请号:CN201710581719.2
申请日:2017-07-17
Applicant: 北京邮电大学 , 中国电子科技集团公司第五十四研究所
IPC: H04B10/25 , H04B10/516
Abstract: 本发明实施例提供适用于光纤传输的信号混频装置及方法,装置包括:第一电光调制器和第二电光调制器,第一电光调制器,用于接收激光信号;接收本振信号;利用本振信号对激光信号进行抑制载波双边带调制得到第一调制后信号;第二电光调制器,用于接收第一调制后信号;将第一调制后信号分路成两路相同的第一分路信号和第二分路信号;接收微波信号;利用微波信号对第一分路信号进行抑制载波双边带调制得到第二调制后信号;响应于用户输入的调节相位的操作,对第二分路信号的相位进行相移;将相移后的第二分路信号与第二调制后信号进行合路得到合路信号;将合路信号通过光纤发送给光电探测器,使其得到有用信号。本发明能降低有用信号的衰落影响。
-
公开(公告)号:CN106452474A
公开(公告)日:2017-02-22
申请号:CN201611046465.6
申请日:2016-11-23
Applicant: 北京邮电大学 , 中国电子科技集团公司第五十四研究所
IPC: H04B1/16
CPC classification number: H04B1/16
Abstract: 本发明为一种零中频接收机,涉及通信技术领域,旨在解决现有零中频接收机中存在的窄带、低频、隔离度差、I/Q不平衡和低动态范围的问题。本发明的零中频接收机中,激光器连接光分路器,光分路器分别连接第1电光调制模块和第2电光调制模块,射频信号接收模块连接第1电光调制模块,本振信号发生器连接第2电光调制模块,第1电光调制模块和第2电光调制模块的连接光域处理模块,光域处理模块连接光电探测模块,光电探测模块连接模数转换及信号处理模块。
-
公开(公告)号:CN106788478B
公开(公告)日:2019-02-19
申请号:CN201710047173.2
申请日:2017-01-22
Applicant: 北京邮电大学 , 中国电子科技集团公司第五十四研究所
Abstract: 本发明实施例提供了一种射频前端,包括:第一电光调制器对第一输入信号与第一光载波信号进行调制,得到第一调制信号;第二电光调制器将本振信号与第二光载波信号进行调制,得到目标调制信号,目标调制信号经第二光分路器分路后形成第一子信号和第二子信号;第三电光调制器将第二输入信号与第三光载波信号进行调制得到第二调制信号;第一光耦合器将第一调制信号和第一子信号进行耦合得到第一耦合信号;第一光电探测器对第一耦合信号进行光电探测,得到第一混频信号;第二光耦合器第二子信号和第二调制信号进行耦合,得到第二耦合信号;第二光电探测器对第二耦合信号进行光电探测,得到第二混频信号。提供了一种具有更高变频范围的射频前端。
-
公开(公告)号:CN106788478A
公开(公告)日:2017-05-31
申请号:CN201710047173.2
申请日:2017-01-22
Applicant: 北京邮电大学 , 中国电子科技集团公司第五十四研究所
Abstract: 本发明实施例提供了一种射频前端,包括:第一电光调制器对第一输入信号与第一光载波信号进行调制,得到第一调制信号;第二电光调制器将本振信号与第二光载波信号进行调制,得到目标调制信号,目标调制信号经第二光分路器分路后形成第一子信号和第二子信号;第三电光调制器将第二输入信号与第三光载波信号进行调制得到第二调制信号;第一光耦合器将第一调制信号和第一子信号进行耦合得到第一耦合信号;第一光电探测器对第一耦合信号进行光电探测,得到第一混频信号;第二光耦合器第二子信号和第二调制信号进行耦合,得到第二耦合信号;第二光电探测器对第二耦合信号进行光电探测,得到第二混频信号。提供了一种具有更高变频范围的射频前端。
-
公开(公告)号:CN119984482A
公开(公告)日:2025-05-13
申请号:CN202510219819.5
申请日:2025-02-26
Applicant: 北京邮电大学
IPC: G01H9/00
Abstract: 本发明提供一种基于白光光源的干涉型光纤水听器系统,包括:白光光源、传输光纤、传感探头、匹配干涉仪、平衡光电探测器和数据处理单元。其中,白光光源生成白光脉冲信号;传输光纤传输白光脉冲信号;传感探头将水声信号转换为光信号的变化,并将携带有水声信息的光信号后返回至传输光纤;匹配干涉仪匹配传感探头的延时,使光信号进行干涉,完成外差检测;平衡光电探测器探测接收光信号后转换为电信号,并消除共模噪声;数据处理单元对电信号进行处理,解调评估系统的本底噪声和水声信号。本发明提供的干涉型光纤水听器系统能够在无水下中继条件下实现远距离水声传感。
-
公开(公告)号:CN111966960B
公开(公告)日:2023-12-26
申请号:CN202010702852.0
申请日:2020-07-21
Applicant: 北京邮电大学
IPC: G06F17/14
Abstract: 本发明实施例提供的全光短时傅里叶变换系统和方法,通过将待测射频信号中携带的通讯信息添加到光学频率梳中,得到调制后的光信号,提取频率成分,并将频率成分映射到目标自由光谱范围上,得到带宽放大后的光信号;通过脉冲剪刀进行切割,得到光脉冲;再通过相位调制后,将调制后的光脉冲经过色散介质,得到输入信号频率成分随时间的变化;将通过色散介质的光信号经过光电探测器,得到对应的电信号。从而通过带宽放大的电光转换,降低色散傅里叶变换对色散值的要求,利用有限的色散获取较高的频谱分析精度。由于短时傅里叶变换直接在光信号上就可以得到计算结果,从而不再受限于数字信号处理的能力以及处理延迟,提高了射频频谱的分析速度。
-
公开(公告)号:CN114024616B
公开(公告)日:2023-05-02
申请号:CN202111236183.3
申请日:2021-10-22
Applicant: 北京邮电大学
Abstract: 本发明提供一种偏振态独立调制实现的多路变频结构,包括:第一波分复用器;多个调频支路,输入端与第一波分复用器的输出端连接,各调频支路包括第一偏振分束器、第一调制器以及第一偏振合束器,第一偏振分束器的输入端与第一波分复用器的输出端连接,第一调制器的输入端和输出端分别与第一偏振分束器的第一输出端和第一偏振合束器的第一输入端连接,第一偏振分束器的第二输出端与第一偏振合束器的第二输入端连接;第二波分复用器,与多个调频支路的输出端连接;第二偏振分束器,与第二波分复用器的输出端连接;第二调制器,输入端与第二偏振分束器的第一输出端连接;光耦合器,输入端与第二偏振分束器的第二输出端及第二调制器的输出端连接。
-
公开(公告)号:CN107069390B
公开(公告)日:2019-04-12
申请号:CN201710407834.8
申请日:2017-06-02
Applicant: 北京邮电大学
IPC: H01S1/02
Abstract: 本发明实施例提供了一种光电振荡器,其包括扫频光源、相位调制器和带阻光滤波器。其中,相位调制器对扫频光信号进行相位调制,生成具有正、负一阶边带的第一中间信号;带阻光滤波器滤除第一中间信号中的任一边带;光电探测器与带阻光滤波器相连,接收带阻光滤波器的输出信号,将其转换成中心频率可调的周期性扫频微波信号,并将其放大之后反馈至相位调制器;其中,扫频光源、相位调制器和带阻光滤波器构成带通扫频的微波滤波器,且带通扫频的微波滤波器的中心频率等于扫频光源的中心频率与带阻光滤波器的中心频率之差。由此,本发明实施例解决了如何产生低相噪、相关性好且中心频率可调的周期性扫频微波信号的技术问题。
-
公开(公告)号:CN108964780A
公开(公告)日:2018-12-07
申请号:CN201810833865.4
申请日:2018-07-26
Applicant: 北京邮电大学
IPC: H04B10/516 , H04B10/54 , H04B10/50 , H04B10/61
CPC classification number: H04B10/516 , H04B10/503 , H04B10/54 , H04B10/61
Abstract: 本发明实施例提供了一种用于相干光探测的信号发送器、信号接收器、系统及方法。具体方案如下:产生初始载波信号;按照预设差频,调整初始载波信号的频率,并按照预设调制模式,将待探测信号调制到调整后的载波信号中,得到第一信号。接收并放大第一信号,得到第二信号;接收产生的初始本振光信号,调整初始本振光信号,将第二信号与调整后的本振光信号进行耦合,再对耦合后的信号进行拍频处理,得到第三信号;放大第三信号,并按照预设解调模式,解调放大后的第三信号,得到解调后的待探测信号。采用本发明实施例提供的方案,可以实现微波信号在传输链路中的远距离、高灵敏度传输,提升传输链路的整体性能,满足实际需求。
-
公开(公告)号:CN108599865A
公开(公告)日:2018-09-28
申请号:CN201810332866.0
申请日:2018-04-13
Applicant: 北京邮电大学
Abstract: 本发明实施例提供了一种基于光子神经网络的信号调制格式识别方法、装置、电子设备及存储介质,方法包括:获取待识别信号的特征信号,特征信号为对待识别信号采样后得到的;将特征信号输入光子芯片,光子芯片用于完成用于信号调制格式识别的神经网络算法中的线性运算,获取光子芯片进行线性运算后的输出结果,并基于输出结果进行神经网络算法中的非线性运算,得到待识别信号的调制格式。从而不需要使用处理器来处理神经网络中线性运算部分包含的矩阵运算,提高了信号调制格式识别的速度,且由于使用光子芯片进行运算时能耗很小,因此使用这种方法也降低了整个系统的功耗。
-
-
-
-
-
-
-
-
-