一种基于BoTNet融合时空特征的加密流量识别方法

    公开(公告)号:CN117240488A

    公开(公告)日:2023-12-15

    申请号:CN202210645552.2

    申请日:2022-06-08

    Abstract: 本发明公开一种基于BoTNet融合时空特征的加密流量识别方法,通过构建并行网络,利用BoTNet和BiLSTM两个子网络分别提取已经过预处理的加密流量图形式中的空间特征与时间特征,将两个子网络并行后通过早融合的方式结合,最后通过融合后的特征实现加密流量的分类与识别。包括:加密流量预处理模块,负责通过基于保留完整数据报的数据预处理方式,将原始加密流量转换为加密流量图像;加密流量识别网络架构,负责分别抽取空间与时间两个维度的特征,通过特征融合实现加密流量的分类与识别。本发明通过提取更深层次以及更丰富的加密流量特征,进一步提高了加密流量识别的准确率。

    一种多步攻击模式挖掘方法

    公开(公告)号:CN113132414B

    公开(公告)日:2022-10-14

    申请号:CN202110500708.3

    申请日:2021-05-08

    Abstract: 本发明公开一种多步攻击模式挖掘方法,实现基于少量先验知识的初始攻击模型启发式的生成新的攻击模型,并能够根据图匹配计算预测概率。包括:敏感信息与告警日志融合算法:针对告警日志的误报和漏报性质,将从流量数据中筛选出的敏感信息和告警日志通过IP相似度聚簇、攻击簇内合并和过滤、攻击簇间筛选三种算法进行融合。多步攻击模型:多步攻击模型定义如下其中N表示某类攻击的实际攻击过程步数,ABC代表多步攻击中每一个单步攻击的属性特征值。启发式多步攻击模型生成和攻击预测算法:通过图的概率匹配达到针对多步攻击的预测,步骤包括匹配对应点、计算概率值、生成多步攻击图模型、衡量转换。本发明通过启发式生成新攻击模型为攻击预测提供了新的思路。

    一种多步攻击模式挖掘方法

    公开(公告)号:CN113132414A

    公开(公告)日:2021-07-16

    申请号:CN202110500708.3

    申请日:2021-05-08

    Abstract: 本发明公开一种多步攻击模式挖掘方法,实现基于少量先验知识的初始攻击模型启发式的生成新的攻击模型,并能够根据图匹配计算预测概率。包括:敏感信息与告警日志融合算法:针对告警日志的误报和漏报性质,将从流量数据中筛选出的敏感信息和告警日志通过IP相似度聚簇、攻击簇内合并和过滤、攻击簇间筛选三种算法进行融合。多步攻击模型:多步攻击模型定义如下其中N表示某类攻击的实际攻击过程步数,ABC代表多步攻击中每一个单步攻击的属性特征值。启发式多步攻击模型生成和攻击预测算法:通过图的概率匹配达到针对多步攻击的预测,步骤包括匹配对应点、计算概率值、生成多步攻击图模型、衡量转换。本发明通过启发式生成新攻击模型为攻击预测提供了新的思路。

    一种基于流量特征的APT组织流量识别方法

    公开(公告)号:CN112073362B

    公开(公告)日:2022-04-26

    申请号:CN202010567204.9

    申请日:2020-06-19

    Abstract: 本发明公开一种基于流量特征的APT组织流量识别方法,定义并计算DNS和TCP、HTTP/HTTPS流量中的APT组织特征,利用特征识别出APT组织流量,实现APT组织流量识别。定义的组织特征包括:Response_type,用于区分APT组织流量中的DNS隧道流量;包负载波动特征C2Load_fluct,用于计算DNS流量在时间窗口内,流量包簇在单位域名下的平均负载量;包相似特征Bad_rate,用于判断APT组织恶意流量产生时的网络状态。本发明通过构造组织流量特征进行APT组织流量识别,提出并定义的组织特征能够有效地将APT恶意流量和正常流量进行区分,提高了APT组织流量识别的准确性,为APT组织流量识别提供了新的设计思路。

    一种基于流量特征的APT组织流量识别方法

    公开(公告)号:CN112073362A

    公开(公告)日:2020-12-11

    申请号:CN202010567204.9

    申请日:2020-06-19

    Abstract: 本发明公开一种基于流量特征的APT组织流量识别方法,定义并计算DNS和TCP、HTTP/HTTPS流量中的APT组织特征,利用特征识别出APT组织流量,实现APT组织流量识别。定义的组织特征包括:Response_type,用于区分APT组织流量中的DNS隧道流量;包负载波动特征C2Load_fluct,用于计算DNS流量在时间窗口内,流量包簇在单位域名下的平均负载量;包相似特征Bad_rate,用于判断APT组织恶意流量产生时的网络状态。本发明通过构造组织流量特征进行APT组织流量识别,提出并定义的组织特征能够有效地将APT恶意流量和正常流量进行区分,提高了APT组织流量识别的准确性,为APT组织流量识别提供了新的设计思路。

Patent Agency Ranking