-
公开(公告)号:CN107341571A
公开(公告)日:2017-11-10
申请号:CN201710497921.7
申请日:2017-06-27
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于量化社会影响力的社交网络用户行为预测方法,该方法包括数据爬取、数据预处理、构建网络图、用户兴趣提取、用户间影响力量化、预测建模、模型训练评估。主要用于在大规模社交网络中实现对用户行为,例如社交网络如Twitter上的转推行为进行预测。同现有技术相比,本发明首先考虑量化社交网络中用户间的社会影响力,并将该量化的影响力引入到预测模型中来,使得预测模型能够充分考量一个给定用户周围的其他用户对该用户行为的影响,并且本发明从用户兴趣这一角度出发来进行用户行为的预测,通过量化的社会影响力来计算用户的兴趣,并最终由用户兴趣来推测用户的行为,具有更高的准确度。
-
公开(公告)号:CN107341571B
公开(公告)日:2020-05-19
申请号:CN201710497921.7
申请日:2017-06-27
Applicant: 华中科技大学
IPC: G06Q10/04 , G06Q50/00 , G06F16/901 , G06F16/35
Abstract: 本发明公开了一种基于量化社会影响力的社交网络用户行为预测方法,该方法包括数据爬取、数据预处理、构建网络图、用户兴趣提取、用户间影响力量化、预测建模、模型训练评估。主要用于在大规模社交网络中实现对用户行为,例如社交网络如Twitter上的转推行为进行预测。同现有技术相比,本发明首先考虑量化社交网络中用户间的社会影响力,并将该量化的影响力引入到预测模型中来,使得预测模型能够充分考量一个给定用户周围的其他用户对该用户行为的影响,并且本发明从用户兴趣这一角度出发来进行用户行为的预测,通过量化的社会影响力来计算用户的兴趣,并最终由用户兴趣来推测用户的行为,具有更高的准确度。
-
公开(公告)号:CN107341145B
公开(公告)日:2019-11-12
申请号:CN201710473195.5
申请日:2017-06-21
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于深度学习的用户情感分析方法,其中,方法的实现包括数据预处理、词向量学习、文本向量学习、用户特征向量表示、用户情感分析以及模型更新。本发明方法使用用户发表的文本信息提取用户的特征向量,并基于该用户特征向量及词向量信息实现基于用户特征的文本情感分析,基于本发明不仅优化了用户特征学习的复杂程度、而且得到的用户特征向量具有更丰富的用户画像信息,使得基于该用户特征向量及词向量对文本进行情感分析时提升了情感分析的准确度及效率。
-
公开(公告)号:CN107341145A
公开(公告)日:2017-11-10
申请号:CN201710473195.5
申请日:2017-06-21
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于深度学习的用户情感分析方法,其中,方法的实现包括数据预处理、词向量学习、文本向量学习、用户特征向量表示、用户情感分析以及模型更新。本发明方法使用用户发表的文本信息提取用户的特征向量,并基于该用户特征向量及词向量信息实现基于用户特征的文本情感分析,基于本发明不仅优化了用户特征学习的复杂程度、而且得到的用户特征向量具有更丰富的用户画像信息,使得基于该用户特征向量及词向量对文本进行情感分析时提升了情感分析的准确度及效率。
-
-
-