-
公开(公告)号:CN116813334B
公开(公告)日:2025-04-15
申请号:CN202310170537.1
申请日:2023-02-27
Applicant: 广东华中科技大学工业技术研究院 , 华中科技大学温州先进制造技术研究院
Abstract: 本发明公开了多孔无铅压电陶瓷元件、空气耦合多孔无铅超声换能器及其制备方法,属于超声换能器技术领域。所述元件中孔隙均匀分布,孔隙率为55%‑75%,孔结构为Gyroid;其制备方法包括:无铅陶瓷粉经光固化3D打印成多孔压电陶瓷元件。本发明公开的空气耦合多孔无铅超声换能器包含多孔压电陶瓷元件。本发明提供的多孔无铅压电陶瓷元件,通过孔隙的设计,使得声阻抗降低到5.95MRayl,利于与空气实现声阻抗。本发明提供的空气耦合多孔无铅超声换能器,检测灵敏度达到‑27dB以下。
-
公开(公告)号:CN116813334A
公开(公告)日:2023-09-29
申请号:CN202310170537.1
申请日:2023-02-27
Applicant: 广东华中科技大学工业技术研究院 , 华中科技大学温州先进制造技术研究院
Abstract: 本发明公开了多孔无铅压电陶瓷元件、空气耦合多孔无铅超声换能器及其制备方法,属于超声换能器技术领域。所述元件中孔隙均匀分布,孔隙率为55%‑75%,孔结构为Gyroid;其制备方法包括:无铅陶瓷粉经光固化3D打印成多孔压电陶瓷元件。本发明公开的空气耦合多孔无铅超声换能器包含多孔压电陶瓷元件。本发明提供的多孔无铅压电陶瓷元件,通过孔隙的设计,使得声阻抗降低到5.95MRayl,利于与空气实现声阻抗。本发明提供的空气耦合多孔无铅超声换能器,检测灵敏度达到‑27dB以下。
-
公开(公告)号:CN117070039A
公开(公告)日:2023-11-17
申请号:CN202310287477.1
申请日:2023-03-23
Applicant: 广东华中科技大学工业技术研究院 , 华中科技大学温州先进制造技术研究院
Abstract: 本发明公开了一种高储能二元铁电共混介电薄膜及其制备方法,属于介电薄膜材料技术领域。该介电薄膜由聚偏氟乙烯‑氯氟乙烯共聚物和聚偏氟乙烯‑六氟丙烯共聚物共混、流延、干燥制成;所述聚偏氟乙烯‑氯氟乙烯共聚物和聚偏氟乙烯‑六氟丙烯共聚物的质量比为x∶1‑x;其中,0.4≤x≤0.6。该介电薄膜获得了560kV/mm的高击穿强度,相比原材料P(VDF‑CTFE)和P(VDF‑HFP)分别提升了75%和56%,最高达到了32J/cm3的储能能量。
-
公开(公告)号:CN118522566A
公开(公告)日:2024-08-20
申请号:CN202410662849.9
申请日:2024-05-27
Applicant: 华中科技大学 , 广东华中科技大学工业技术研究院
Abstract: 本发明公开一种铅基异质结构的铁电薄膜电容器及制备方法,铁电薄膜电容器从下往上依次由硅基底、下电极、中间铁电电介质和上电极组成,其中,硅基底采用的是Si(100),下电极采用的是Pt电极,中间铁电电介质由Pb(Zr0.52Ti0.48)O3薄膜和Pb0.8La0.1Ca0.1Ti0.975O3底层上下组成,上电极采用的是Au电极。本发明可以实现有效储能密度为41J/cm3,储能效率50%,保持良好频率、温度稳定性。
-
公开(公告)号:CN119551996A
公开(公告)日:2025-03-04
申请号:CN202411456420.0
申请日:2024-10-17
Applicant: 广东华中科技大学工业技术研究院 , 华中科技大学
IPC: C04B35/80 , C04B35/48 , C04B35/622 , C04B35/63
Abstract: 本发明提供了一种氧化锆材料及其制备方法和应用,属于陶瓷材料技术领域。本发明加入氧化铝晶须,利用氧化铝晶须对裂纹的偏转作用,氧化铝晶须会改变裂纹的扩展方向,提高裂纹扩展能量,有效抑制裂纹扩展,从而提高韧性;加入分散剂并控制分散剂的种类,特定种类的分散剂可以将氧化铝晶须和氧化锆粉体均匀包裹,减少团聚,提高均匀性,充分发挥晶须的裂纹偏转作用;将悬浊液进行超声分散可以在不破坏氧化铝晶须结构的情况下将氧化铝晶须均匀的分散在氧化锆粉体基体中,充分发挥氧化铝晶须的裂纹偏转作用;采用放电等离子烧结可以在烧结过程中提高材料致密度、减少晶粒尺寸,提高韧性,并极大缩短制备时间。
-
公开(公告)号:CN119803650A
公开(公告)日:2025-04-11
申请号:CN202510199251.5
申请日:2025-02-21
IPC: G01H11/08
Abstract: 本发明公开一种压电振动传感器及其设计方法,涉及振动传感器领域,包括:具有耐高温特性的连接柱以及压电传感单元,连接柱的两侧对称设置有压电传感单元,压电传感单元包括均具有耐高温特性的压电敏感元件、电极片以及配重块,电极片的两侧均设置有压电敏感元件,一侧压电敏感元件靠近连接柱设置,另一侧压电敏感元件靠近配重块设置,预紧螺丝穿过两侧压电传感单元以及连接柱与预紧螺母连接;本发明中高温下各构件由于热膨胀系数不同产生的预紧力变化减小,从而温漂降低,提高温度稳定性,进而提高可靠性以及检测精确度;本传感器综合性能好,在高温条件下工作能够保证稳定的信号输出,降低了高温环境下材料损坏的风险,利于商业化生产和应用。
-
公开(公告)号:CN116354726B
公开(公告)日:2025-01-24
申请号:CN202310274431.6
申请日:2023-03-20
Applicant: 广东华中科技大学工业技术研究院
IPC: C04B35/563 , C04B35/622 , C04B35/645
Abstract: 本发明公开一种超高硬度碳化硼陶瓷材料,该超高硬度碳化硼陶瓷材料的原料成分为B4C粉末和Ti6Al4V粉末,B4C粉末的体积百分比含量为95~99.5%,Ti6Al4V粉末的体积百分比含量为0.5~5%。其制备方法包括以下步骤:A、粉末混合:将B4C粉末和Ti6Al4V粉末按比例进行行星球磨混合,球磨介质为氧化锆球和无水乙醇;B、放电等离子烧结:将球磨后的混合粉体放入石墨模具中,再将石墨模具放入放电等离子烧结腔体中进行烧结即得到超高硬度碳化硼陶瓷材料,待冷却后将超高硬度碳化硼陶瓷材料从石墨模具中取出。本发明克服了现有对于碳化硼陶瓷的致密化问题,成功制备出超高硬度碳化硼陶瓷材料。
-
公开(公告)号:CN114315346A
公开(公告)日:2022-04-12
申请号:CN202111510404.1
申请日:2021-12-10
Applicant: 广东华中科技大学工业技术研究院
IPC: C04B35/475 , C04B35/622 , C04B35/638
Abstract: 本发明公开一种双模板织构的大应变无铅压电织构化陶瓷的制备方法,首先制备陶瓷超细粉体;采用两种片状微晶模板与粉体、有机溶剂和助剂混合均匀,经过球磨制浆、流延、叠压、温等静压、切割、排胶、冷等静压、烧结,得到双模板织构的大应变无铅压电织构化陶瓷。所述两种片状微晶模板,第一种为Bi0.5Na0.5TiO3或Bi0.5Na0.5TiO3‑0.7BaTiO3,第二种为NbNaO3、SrTiO3或BaTiO3,与粉体的质量比为1:(0.01‑0.3)。本发明制得的大应变无铅压电织构化陶瓷为弛豫铁电相,相比于原有非织构情况下的压电陶瓷,其逆压电系数大大提高,提高其电致应变特性,织构度达到90%,质量更好。
-
公开(公告)号:CN114133219A
公开(公告)日:2022-03-04
申请号:CN202111510238.5
申请日:2021-12-10
Applicant: 广东华中科技大学工业技术研究院
Abstract: 本发明公开一种电子烟用氧化锆复合的高温多孔陶瓷及其制备方法,具体步骤包括:将350‑375重量份D50粒径为30‑70μm的氧化铝、25‑50重量份D50粒径为1‑3μm的氧化锆、80‑120重量份D50粒径为30‑50μm的玉米淀粉、40‑60重量份的玻璃粉、1‑5重量份的硬脂酸和100‑150重量份的石蜡进行球磨,得到混合料;将60‑100重量份的聚丙烯加入密炼机中,分5次加入混合料,进行密炼、破碎、注射成型、排胶烧结,得到电子烟用氧化锆复合的高温多孔陶瓷。本发明采用氧化铝‑氧化锆体系制备多孔陶瓷,基于氧化铝‑氧化锆高温下不固溶,通过氧化锆陶瓷弥散分布在氧化铝颗粒之间,高温下抑制氧化铝晶粒间晶界的迁移,抑制晶粒长大,从而实现了孔隙率≥50%,孔径大于20微米,抗压强度≥500N的多孔陶瓷雾化芯。
-
公开(公告)号:CN116102351A
公开(公告)日:2023-05-12
申请号:CN202211681299.2
申请日:2022-12-27
Applicant: 广东华中科技大学工业技术研究院
IPC: C04B35/495 , C04B35/622 , C04B35/63 , C04B35/64
Abstract: 本发明公开一种铌酸钾钠基压电陶瓷制备及烧结方法,包括以下步骤:准备原料K2CO3、Na2CO3、Nb2O5、CaCO3、ZrO2、Bi2O3、HfO2、Li2CO3;将全部原料进行一次球磨得到陶瓷粉体,再将陶瓷粉体烘干;将烘干后的陶瓷粉体进行预烧;将预烧后的陶瓷粉体进行二次球磨,再烘干得到陶瓷预烧粉体;将造粒后的陶瓷预烧粉体装入石墨模具中并压片;将石墨模具放置在SPS烧结炉中进行加压加热成型,形成陶瓷块体;冷却石墨模具;将得到的陶瓷块体退火,消除SPS烧结过程中表面产生的碳化层,最后得到高致密度的铌酸钾钠陶瓷。本发明的目的为针对陶瓷材料要求无铅化,铌酸钾钠陶瓷致密性差,烧结温度高的问题所提出。
-
-
-
-
-
-
-
-
-