基于局部上下文焦点机制和交谈注意力的方面级情感分析

    公开(公告)号:CN116541579A

    公开(公告)日:2023-08-04

    申请号:CN202310548728.7

    申请日:2023-05-16

    Applicant: 华侨大学

    Abstract: 本发明提供一种基于局部上下文焦点机制和交谈注意力的方面级情感分析,包括:步骤S1、构建分析模型;步骤S2、BERT预训练层分别对局部上下文形式序列和全局上下文形式序列中的词进行建模,得到初步局部上下文特征和初步全局上下文特征;步骤S3、在特征提取层,利用局部上下文焦点机制,通过上下文特征动态掩码技术结合交谈注意力机制来进一步提取局部上下文特征,并使用交谈注意力机制提取全局上下文特征;步骤S4、在特征学习层,将局部上下文特征和全局上下文特征进行融合得到融合向量,并采用交谈注意力机制提取融合向量的特征;步骤S5、在输出层,根据融合向量的特征获取方面级情感分析的结果。本发明能够更好地捕获不同方面中蕴含的情感。

    一种文本信息推荐方法、装置及可读介质

    公开(公告)号:CN113553510B

    公开(公告)日:2023-06-20

    申请号:CN202110875172.3

    申请日:2021-07-30

    Applicant: 华侨大学

    Abstract: 本发明公开了一种文本信息推荐方法、装置及可读介质,通过获取用户数据及所对应的文本语料,对文本语料进行预处理,得到文本数据;将用户数据进行处理得到用户属性特征,将文本数据通过词注意力网络生成文本特征,将用户数据利用知识图谱表示学习模型生成用户知识图谱特征,将用户属性特征、文本特征和用户知识图谱特征进行拼接,得到综合特征;将综合特征输入多层感知机,得到用户偏好类别及对应的推送数量。本发明加强对用户兴趣的识别度和扩展性,从而提高推荐结果的准确性和多样性,通过综合特征可得到多个维度的抽象特征表示,缓解传统个性化信息推荐中的数据稀疏、冷启动等问题。将注意力机制应用到文本推荐,进一步提高准确度。

    一种文本信息推荐方法、装置及可读介质

    公开(公告)号:CN113553510A

    公开(公告)日:2021-10-26

    申请号:CN202110875172.3

    申请日:2021-07-30

    Applicant: 华侨大学

    Abstract: 本发明公开了一种文本信息推荐方法、装置及可读介质,通过获取用户数据及所对应的文本语料,对文本语料进行预处理,得到文本数据;将用户数据进行处理得到用户属性特征,将文本数据通过词注意力网络生成文本特征,将用户数据利用知识图谱表示学习模型生成用户知识图谱特征,将用户属性特征、文本特征和用户知识图谱特征进行拼接,得到综合特征;将综合特征输入多层感知机,得到用户偏好类别及对应的推送数量。本发明加强对用户兴趣的识别度和扩展性,从而提高推荐结果的准确性和多样性,通过综合特征可得到多个维度的抽象特征表示,缓解传统个性化信息推荐中的数据稀疏、冷启动等问题。将注意力机制应用到文本推荐,进一步提高准确度。

Patent Agency Ranking