一种基于改进AdaBoost算法的地基云图识别方法

    公开(公告)号:CN103235954A

    公开(公告)日:2013-08-07

    申请号:CN201310147108.9

    申请日:2013-04-23

    Abstract: 本发明公开了一种基于改进AdaBoost算法的地基云图识别方法,使用聚类算法将云目标与背景分离,仅对云目标进行特征提取,计算特征值用于云的识别,从而提高了识别的准确率;使用AdaBoost集成算法将SVM学习算法训练出的多个单个分类器进行集成,在训练数据过程中对SVM算法中的参数进行合理的调整,使得训练出的分类器具有多样性,不仅提高了云图识别的准确率,而且使得泛化性能得到很大的改善。由于使用了集成算法,对单个分类器设计的要求并不高,这有效的降低了单个分类器设计难度;本发明结构简单,利用现有的图形采集设备和普通计算机即可进行实现,提高了实用性和适用性。

Patent Agency Ranking