-
公开(公告)号:CN114400936A
公开(公告)日:2022-04-26
申请号:CN202111677036.X
申请日:2021-12-31
Applicant: 南京埃斯顿自动化股份有限公司 , 东南大学
IPC: H02P21/13 , H02P21/22 , H02P6/34 , H02P25/026 , H02P27/08
Abstract: 本发明涉及高精度伺服控制系统领域,尤其涉及一种基于扰动补偿的PMSM伺服系统的快速有限时间复合控制方法;该方法首先通过有限时间干扰观测器对伺服系统的集总扰动进行估计,并将扰动估计值进行前馈补偿;最后,得到了一种基于扰动补偿的快速有限时间复合控制律,将其作为快速有限时间复合速度控制器,以实现永磁同步电机伺服系统在扰动影响下的控制。本发明利用有限时间干扰观测器提升了扰动观测误差收敛的速度,提高了扰动的补偿效果;同时该复合控制器实现了系统的有限时间控制,并有效地减小了系统的上升时间,实现了系统在大偏差工况下的快速响应。
-
公开(公告)号:CN107065524B
公开(公告)日:2020-05-12
申请号:CN201710048712.4
申请日:2017-01-20
Applicant: 东南大学 , 南京埃斯顿自动化股份有限公司
IPC: G05B13/04
Abstract: 本发明公开了一种伺服系统频域辨识系统及辨识方法,其中辨识系统包括电机参数读入模块,读取伺服系统中所用伺服电机的额定电流和伺服电机的参考负载惯量比;幅值自适应随机测试序列生成模块,生成幅值自适应随机测试序列;速度开环测试模块,采集测试结构的电机转速;频率特性求解模块,得到伺服系统的频率特性;频率模型辨识模块,建立待求频率模型,通过待求频率模型来逼近频率特性求解模块得到的频率特性。本发明的频率模型辨识方法相对于现有技术具有可靠性和准确性更高的有益效果。
-
公开(公告)号:CN111010063A
公开(公告)日:2020-04-14
申请号:CN201911396091.4
申请日:2019-12-30
Applicant: 南京埃斯顿自动化股份有限公司 , 东南大学
IPC: H02P21/00
Abstract: 本发明涉及设备控制领域,尤其涉及一种永磁同步电机的单环模型预测与参考信号前馈的复合控制方法,其特征在于:检测永磁同步电机的三相电流、转速及转子角位置,以永磁同步电机的d轴电流环PI控制器得出d轴电压;建立预测模型,将永磁同步电机的速度环和q轴电流环合并为单控制环结构并采用MPC控制形成单环MPC控制器,将速度参考信号的前馈控制量考虑进预测模型中并对反馈控制量进行优化,形成单环MPC与参考信号前馈的复合控制器得出q轴电压;根据d轴电压和q轴电压计算三相逆变器的开关信号实现电机控制。本发明通过将速度参考信号的前馈控制量嵌入到预测模型中,实现对永磁同步电机伺服系统速度环带宽的提升。
-
公开(公告)号:CN103401500B
公开(公告)日:2015-10-07
申请号:CN201310365048.8
申请日:2013-08-20
Applicant: 东南大学 , 南京埃斯顿自动控制技术有限公司 , 南京埃斯顿自动化股份有限公司
IPC: H02P21/05
Abstract: 一种基于重复控制器的高精度永磁同步电机交流伺服系统转速脉动抑制方法,适用于永磁同步电机的高精度控制,该方法首先采集得到稳态速度波动信息,通过快速傅里叶分析得到给各个速度下的首要频率波动分量和次要频率波动分量,根据实验数据建立给定速度与两个频率波动分量的对应数据表格,在此基础上将电流环和电机作为广义对象在速度环设置重复控制器抑制稳态波动,为保证系统动态输出性能,结合PI控制器得到复合控制器输出。该方法实现简单,参数调节较少,可以有效地减小永磁同步电机交流伺服系统稳态波动,从而达到提高永磁同步电机交流伺服系统稳态精度的目的,满足高性能永磁同步电机交流伺服领域应用。
-
公开(公告)号:CN103401500A
公开(公告)日:2013-11-20
申请号:CN201310365048.8
申请日:2013-08-20
Applicant: 东南大学 , 南京埃斯顿自动控制技术有限公司 , 南京埃斯顿自动化股份有限公司
IPC: H02P21/05
Abstract: 一种基于重复控制器的高精度永磁同步电机交流伺服系统转速脉动抑制方法,适用于永磁同步电机的高精度控制,该方法首先采集得到稳态速度波动信息,通过快速傅里叶分析得到给各个速度下的首要频率波动分量和次要频率波动分量,根据实验数据建立给定速度与两个频率波动分量的对应数据表格,在此基础上将电流环和电机作为广义对象在速度环设置重复控制器抑制稳态波动,为保证系统动态输出性能,结合PI控制器得到复合控制器输出。该方法实现简单,参数调节较少,可以有效地减小永磁同步电机交流伺服系统稳态波动,从而达到提高永磁同步电机交流伺服系统稳态精度的目的,满足高性能永磁同步电机交流伺服领域应用。
-
公开(公告)号:CN111010063B
公开(公告)日:2022-04-19
申请号:CN201911396091.4
申请日:2019-12-30
Applicant: 南京埃斯顿自动化股份有限公司 , 东南大学
IPC: H02P21/00
Abstract: 本发明涉及设备控制领域,尤其涉及一种永磁同步电机的单环模型预测与参考信号前馈的复合控制方法,其特征在于:检测永磁同步电机的三相电流、转速及转子角位置,以永磁同步电机的d轴电流环PI控制器得出d轴电压;建立预测模型,将永磁同步电机的速度环和q轴电流环合并为单控制环结构并采用MPC控制形成单环MPC控制器,将速度参考信号的前馈控制量考虑进预测模型中并对反馈控制量进行优化,形成单环MPC与参考信号前馈的复合控制器得出q轴电压;根据d轴电压和q轴电压计算三相逆变器的开关信号实现电机控制。本发明通过将速度参考信号的前馈控制量嵌入到预测模型中,实现对永磁同步电机伺服系统速度环带宽的提升。
-
公开(公告)号:CN102497156B
公开(公告)日:2015-04-29
申请号:CN201110445181.5
申请日:2011-12-27
Applicant: 东南大学 , 南京埃斯顿自动化股份有限公司 , 南京埃斯顿自动控制技术有限公司
Abstract: 本发明公开了一种永磁同步电机速度环的神经网络自校正控制方法,该方法是将电流环和电机作为广义对象,首先采集出转速和电流等信息,用一个自适应线性时延神经网络对电机进行离线参数辨识,然后将离线学习得到的权值作为在线学习的初值,最后对系统进行在线参数辨识,根据辨识的参数计算出电机的负载转矩;根据得到的参数值和负载扰动值,设计神经网络自校正控制律,并根据被控对象与辨识模型之间的误差在线调整网络的权值,进而在线整定神经网络自校正控制器的参数,实现了控制器参数的在线调整,从而可以消除系统的不确定性和外部扰动带来的影响,改善伺服系统的动态性能和抗扰动能力。
-
公开(公告)号:CN118367834A
公开(公告)日:2024-07-19
申请号:CN202410414551.6
申请日:2024-04-08
Applicant: 南京埃斯顿自动化股份有限公司 , 东南大学
IPC: H02P21/22 , H02P21/13 , H02P25/024 , H02P27/12
Abstract: 本申请公开了一种永磁同步电机伺服系统电流环解耦控制方法、装置及介质,方法包括如下步骤:建立包含d轴、q轴集总干扰的永磁同步电机dq轴坐标系模型;根据永磁同步电机dq轴坐标系模型建立非光滑干扰观测器,并根据非光滑干扰观测器获得干扰观测值;将获得的干扰观测值前馈补偿到永磁同步电机控制器的输出上,实现交直轴电流方程的解耦控制。本申请使用非光滑干扰观测器观测电流方程存在的干扰,本申请优点在于干扰观测器的收敛更快,能兼顾控制的快速性和超调量,有效地减小弱磁工况下电流环的跟踪误差,提升电流控制效果。
-
公开(公告)号:CN118367833A
公开(公告)日:2024-07-19
申请号:CN202410414548.4
申请日:2024-04-08
Applicant: 南京埃斯顿自动化股份有限公司 , 东南大学
IPC: H02P21/22 , H02P21/13 , H02P25/024 , H02P27/12
Abstract: 本申请公开了一种永磁同步电机电流环无差拍控制方法,包括以下步骤:建立永磁同步电机dq轴坐标系数学模型;基于永磁同步电机dq轴坐标系数学模型建立双电感在线参数辨识模型和干扰观测器;通过立双电感在线参数辨识模型进行实时参数辨识,获得电感Ld和Lq;根据获得的Ld和Lq对干扰进行估计;在电流控制器加入干扰补偿和时延补偿。本申请优点是提高伺服控制系统的稳态控制性能以及鲁棒性。
-
公开(公告)号:CN102497156A
公开(公告)日:2012-06-13
申请号:CN201110445181.5
申请日:2011-12-27
Applicant: 东南大学 , 南京埃斯顿自动化股份有限公司 , 南京埃斯顿自动控制技术有限公司
Abstract: 本发明公开了一种永磁同步电机速度环的神经网络自校正控制方法,该方法是将电流环和电机作为广义对象,首先采集出转速和电流等信息,用一个自适应线性时延神经网络对电机进行离线参数辨识,然后将离线学习得到的权值作为在线学习的初值,最后对系统进行在线参数辨识,根据辨识的参数计算出电机的负载转矩;根据得到的参数值和负载扰动值,设计神经网络自校正控制律,并根据被控对象与辨识模型之间的误差在线调整网络的权值,进而在线整定神经网络自校正控制器的参数,实现了控制器参数的在线调整,从而可以消除系统的不确定性和外部扰动带来的影响,改善伺服系统的动态性能和抗扰动能力。
-
-
-
-
-
-
-
-
-