-
公开(公告)号:CN109446986B
公开(公告)日:2021-09-24
申请号:CN201811263570.4
申请日:2018-10-28
Applicant: 南京林业大学
Abstract: 本发明公开了一种面向树木激光点云的有效特征抽取与树种识别方法,包括:获取目标树的全覆盖点云数据;对目标树的全覆盖点云数据进行降噪处理以去除异常点;根据降噪后获得的点云数据分别分析目标树的三种类别的树木特征;抽取基于树木相对聚类特征的最优特征参数组;抽取基于点云分布特征的最优特征参数组;抽取基于树木表观特征的最优特征参数组;将三种类别的树木特征的最优特征参数组进行组合并作为变量输入到SVM分类器中进行树种分类。本发明达到了较高的树种分类精度,为获得更准确的森林树种分布提供了强有力的工具,减少了野外实体调查的高成本、费时、费力,减少了人工判读带来的误差。
-
公开(公告)号:CN109446986A
公开(公告)日:2019-03-08
申请号:CN201811263570.4
申请日:2018-10-28
Applicant: 南京林业大学
Abstract: 本发明公开了一种面向树木激光点云的有效特征抽取与树种识别方法,包括:获取目标树的全覆盖点云数据;对目标树的全覆盖点云数据进行降噪处理以去除异常点;根据降噪后获得的点云数据分别分析目标树的三种类别的树木特征;抽取基于树木相对聚类特征的最优特征参数组;抽取基于点云分布特征的最优特征参数组;抽取基于树木表观特征的最优特征参数组;将三种类别的树木特征的最优特征参数组进行组合并作为变量输入到SVM分类器中进行树种分类。本发明达到了较高的树种分类精度,为获得更准确的森林树种分布提供了强有力的工具,减少了野外实体调查的高成本、费时、费力,减少了人工判读带来的误差。
-