-
公开(公告)号:CN111686772A
公开(公告)日:2020-09-22
申请号:CN202010673427.3
申请日:2020-07-14
Applicant: 南京林业大学
IPC: B01J27/185 , B01J37/10 , C01B13/02
Abstract: 本发明公开了一种镍铁膦酸盐纳米带光催化剂及其制备方法,属于材料制备技术领域。该制备方法包括:(1)将镍铁硝酸盐加入到N,N-二甲基甲酰胺中,得到溶液A;将苯基膦酸加入到N,N-二甲基甲酰胺中,得到溶液B;(2)将溶液A逐滴加入到溶液B中,在溶剂热条件下反应,得到镍铁膦酸盐纳米带光催化剂。本发明工艺操作简单,可重复性高,光催化剂结构稳定,能满足实验室和工业需求。该镍铁膦酸盐纳米带光催化剂具有良好的光催化产氧性能。
-
公开(公告)号:CN112246272A
公开(公告)日:2021-01-22
申请号:CN202011152023.6
申请日:2020-10-23
Applicant: 南京林业大学
IPC: B01J27/24 , B01J37/08 , C02F1/30 , C02F101/30
Abstract: 本发明公开了一种具有缺陷g‑C3N4纳米片光催化剂的制备方法,属于半导体光催化材料制备的技术领域。该方法包括以下步骤:1)称取三聚氰胺,放置于坩埚中,在马弗炉中升温煅烧,500‑580℃煅烧1‑6h,冷却至室温,研磨成粉末;2)取步骤1)获得的粉末样品,放置于磁舟中,在马弗炉中再次升温煅烧,480‑620℃煅烧1‑6h,冷却至室温,研磨成粉末,得到具有缺陷g‑C3N4纳米片光催化剂。本申请通过调控温度将块状g‑C3N4剥离为纳米片并构建缺陷,使其具有更高的光催化性能。制备方法操作简单,重复性高,制备得到的具有缺陷的g‑C3N4纳米片光催化剂对于染料、抗生素的降解都表现出了较高的降解活性。
-
公开(公告)号:CN111686773A
公开(公告)日:2020-09-22
申请号:CN202010673431.X
申请日:2020-07-14
Applicant: 南京林业大学
IPC: B01J27/185 , B01J37/10 , C01B13/02
Abstract: 本发明公开了一种类海胆状镍铁膦酸盐光催化剂及其制备方法,属于材料制备技术领域。该制备方法包括:(1)将镍铁硝酸盐溶于N,N-二甲基甲酰胺中,得到溶液A;将苯基膦酸用N,N-二甲基甲酰胺溶解,得到溶液B;(2)将溶液A逐滴加入到溶液B中,在溶剂热条件下反应,得到类海胆状镍铁膦酸盐光催化剂。本发明工艺操作简单,结构稳定,可重复性高,能满足实验室和工业需求。该类海胆状镍铁膦酸盐光催化剂具有良好的光催化产氧性能。
-
公开(公告)号:CN114558601A
公开(公告)日:2022-05-31
申请号:CN202210067945.X
申请日:2022-01-20
Applicant: 南京林业大学
Abstract: 本发明公开了一种供体‑受体单元修饰的多孔超薄g‑C3N4管光催化剂及其制备方法和应用,属于材料制备技术领域。该方法为将三聚氰胺和L‑半胱氨酸溶于水中,得到溶液A;将溶液A在水热条件下处理,过滤洗涤干燥后,得到超分子前驱体B;将B高温煅烧,得到供体‑受体单元修饰的多孔超薄g‑C3N4管光催化剂。该多孔超薄g‑C3N4管应用在光催化领域,具有良好的光催化产氢性能。通过改变反应条件控制得到供体‑受体单元修饰的多孔超薄g‑C3N4管光催化剂,工艺操作简单,结构稳定,可重复性高,能满足实验室和工业需求。
-
公开(公告)号:CN111686773B
公开(公告)日:2021-11-16
申请号:CN202010673431.X
申请日:2020-07-14
Applicant: 南京林业大学
IPC: B01J27/185 , B01J37/10 , C01B13/02
Abstract: 本发明公开了一种类海胆状镍铁膦酸盐光催化剂及其制备方法,属于材料制备技术领域。该制备方法包括:(1)将镍铁硝酸盐溶于N,N‑二甲基甲酰胺中,得到溶液A;将苯基膦酸用N,N‑二甲基甲酰胺溶解,得到溶液B;(2)将溶液A逐滴加入到溶液B中,在溶剂热条件下反应,得到类海胆状镍铁膦酸盐光催化剂。本发明工艺操作简单,结构稳定,可重复性高,能满足实验室和工业需求。该类海胆状镍铁膦酸盐光催化剂具有良好的光催化产氧性能。
-
公开(公告)号:CN114558601B
公开(公告)日:2023-10-24
申请号:CN202210067945.X
申请日:2022-01-20
Applicant: 南京林业大学
Abstract: 本发明公开了一种供体‑受体单元修饰的多孔超薄g‑C3N4管光催化剂及其制备方法和应用,属于材料制备技术领域。该方法为将三聚氰胺和L‑半胱氨酸溶于水中,得到溶液A;将溶液A在水热条件下处理,过滤洗涤干燥后,得到超分子前驱体B;将B高温煅烧,得到供体‑受体单元修饰的多孔超薄g‑C3N4管光催化剂。该多孔超薄g‑C3N4管应用在光催化领域,具有良好的光催化产氢性能。通过改变反应条件控制得到供体‑受体单元修饰的多孔超薄g‑C3N4管光催化剂,工艺操作简单,结构稳定,可重复性高,能满足实验室和工业需求。
-
-
-
-
-