一种低能耗的纤维素纳米纤维制备方法

    公开(公告)号:CN107245766B

    公开(公告)日:2020-04-17

    申请号:CN201710534501.1

    申请日:2017-07-03

    Abstract: 本发明公开了一种低能耗的纤维素纳米纤维制备方法,将干燥的纤维素原料在四丁基醋酸铵和二甲基亚砜混合溶液中充分搅拌润胀后,再加入马来酸酐,在温和条件下反应后经离心洗涤,将制得的纤维素纳米纤维换至水中,得到稳定的纤维素纳米纤维水分散液。本方法不需要经过任何形式的机械处理就可以一步处理得到分散均匀、尺寸均一的纤维素纳米纤维。纤维的直径分布均匀,约为5‑10nm,长度>500nm。本发明提供的方法能够有效的由竹材溶解浆一步制得纤维素纳米纤维,工艺操作简便,能耗低,并可以在制备的过程中同时完成对纤维素的表面改性,在应用方面有着广阔的前景。

    一种从制备纤维素纳米纤维的废液中回用离子液体的方法

    公开(公告)号:CN108997596A

    公开(公告)日:2018-12-14

    申请号:CN201810750193.0

    申请日:2018-07-09

    Inventor: 潘晖 陈伟 牛逊

    CPC classification number: C08J3/091 C08J2301/02

    Abstract: 本发明公开了一种从制备纤维素纳米纤维的废液中回用离子液体的方法,包括使用双溶剂对制备纤维素纳米纤维的废液进行萃取分离;对萃取相室温减压蒸馏,收集旋余液进行真空干燥;向干燥产物加入溶剂,析出酸酐,离心分离,减压蒸馏上清液,得到回收的离子液体。本发明中,回收离子液体的方法操作简便、条件温和并且不引入二次污染,具有应用于工业化生产的潜力,离子液体的回收率较高,可以实现再利用,同时回收过程中涉及添加的萃取剂及溶剂均可实现高效回收再利用,实现绿色化生产。

    一种纳米纤维素复合抗菌材料及其制备方法

    公开(公告)号:CN106496622A

    公开(公告)日:2017-03-15

    申请号:CN201610930593.0

    申请日:2016-10-31

    Abstract: 本发明公开了一种纳米纤维素复合抗菌材料及其制备方法。该复合包装材料包括两层结构的复合膜,其中一层膜基体为聚乳酸,增强相为松香改性的纳米纤维素,另一层膜为具有天然抗菌性的壳聚糖。制备方法为用溶剂浇铸法分别制备两层膜,然后层层自组装制备出抗菌复合膜。此制备方法简单,材料环保易得。用到的聚乳酸,松香,纳米纤维素,壳聚糖均来源于生物质。其中的松香与壳聚糖具有天然的抗菌性,对大肠杆菌,金色黄色葡萄球菌有良好的抑菌效果。本发明制备的复合材料中纳米粒子在基体中均匀分散,材料呈光滑,均一的外表,力学性能优异,同时膜中的松香与壳聚糖有协同抗菌的效果。在食品包装,医疗器械,机械制造等行业具有潜在的应用价值。

    一种防紫外纤维素纳米纤维增强复合膜及其制备方法

    公开(公告)号:CN107880460B

    公开(公告)日:2020-04-17

    申请号:CN201711320115.9

    申请日:2017-12-12

    Abstract: 本发明公开了一种防紫外纤维素纳米纤维增强复合膜及其制备方法。该复合膜基体为聚乙烯醇,增强相为改性的纤维素纳米纤维。首先制备有异氰酸酯端基的偶联溶液,偶联溶液与分散在二甲亚砜中的纤维素纳米纤维在室温下发生酯化反应。除去多余的偶联剂后,改性后的纤维素纳米纤维按一定质量比与聚乙烯醇水溶液混合,烘箱干燥得到均匀透明的复合膜。本申请中的原料源于生物质,有可生物降解及生物兼容性好等优点。本发明克服了小分子紫外吸收剂稳定性差的缺点,复合膜中纳米粒子在基体中均匀分散,力学性能优良并提供紫外波段显著的防护作用,同时可控制膜中纳米粒子的添加量调控紫外吸收的效果。在食品包装,交通,建筑等行业具有潜在的应用价值。

    一种低能耗的纤维素纳米纤维制备方法

    公开(公告)号:CN107245766A

    公开(公告)日:2017-10-13

    申请号:CN201710534501.1

    申请日:2017-07-03

    Abstract: 本发明公开了一种低能耗的纤维素纳米纤维制备方法,将干燥的纤维素原料在四丁基醋酸铵和二甲基亚砜混合溶液中充分搅拌润胀后,再加入马来酸酐,在温和条件下反应后经离心洗涤,将制得的纤维素纳米纤维换至水中,得到稳定的纤维素纳米纤维水分散液。本方法不需要经过任何形式的机械处理就可以一步处理得到分散均匀、尺寸均一的纤维素纳米纤维。纤维的直径分布均匀,约为5‑10nm,长度>500nm。本发明提供的方法能够有效的由竹材溶解浆一步制得纤维素纳米纤维,工艺操作简便,能耗低,并可以在制备的过程中同时完成对纤维素的表面改性,在应用方面有着广阔的前景。

    一种在室温离子液体中改性纤维素并制备防紫外薄膜的方法

    公开(公告)号:CN108822320B

    公开(公告)日:2021-07-02

    申请号:CN201810756880.3

    申请日:2018-07-10

    Abstract: 本发明公开了一种室温离子液体中改性纤维素并制备防紫外薄膜及其制备方法,先将纤维素原料溶解在四丁基醋酸铵/二甲亚砜离子液体中,然后加入改性酸溶液,进行反应,反应结束后溶液浇铸成膜,干燥,洗涤除去未反应的酸和多余的离子液体,干燥获得改性纤维素膜。本发明中离子液体既是纤维素溶解体系,又是改性反应的溶剂体系。改性所用的酸具有吸收紫外光的特点,赋予了所制备的纤维素材料新的功能性。制备的薄膜在食品包装,交通,建筑等行业具有潜在的应用价值。

    一种防紫外纤维素纳米纤维增强复合膜及其制备方法

    公开(公告)号:CN107880460A

    公开(公告)日:2018-04-06

    申请号:CN201711320115.9

    申请日:2017-12-12

    Abstract: 本发明公开了一种防紫外纤维素纳米纤维增强复合膜及其制备方法。该复合膜基体为聚乙烯醇,增强相为改性的纤维素纳米纤维。首先制备有异氰酸酯端基的偶联溶液,偶联溶液与分散在二甲亚砜中的纤维素纳米纤维在室温下发生酯化反应。除去多余的偶联剂后,改性后的纤维素纳米纤维按一定质量比与聚乙烯醇水溶液混合,烘箱干燥得到均匀透明的复合膜。本申请中的原料源于生物质,有可生物降解及生物兼容性好等优点。本发明克服了小分子紫外吸收剂稳定性差的缺点,复合膜中纳米粒子在基体中均匀分散,力学性能优良并提供紫外波段显著的防护作用,同时可控制膜中纳米粒子的添加量调控紫外吸收的效果。在食品包装,交通,建筑等行业具有潜在的应用价值。

    一种高度透明防紫外纳米纤维素复合膜及其制备方法

    公开(公告)号:CN109021473B

    公开(公告)日:2021-03-09

    申请号:CN201810756977.4

    申请日:2018-07-10

    Abstract: 本发明公开了一种高度透明防紫外纳米纤维素复合膜及其制备方法。该复合膜的基体为聚乙烯醇,增强相为改性的纤维素纳米纤维。首先制备用2‑羟基‑4‑甲氧基二苯甲酮及环氧化大豆油改性的纤维素纳米纤维。改性纤维素纳米纤维按一定质量比与聚乙烯醇水溶液混合,烘箱干燥得到均匀透明的复合膜。本申请中的原料源于生物质,有可生物降解及生物兼容性好等优点。本发明克服了小分子紫外吸收剂稳定性差的缺点,同时环氧化大豆油可作为增塑剂增加复合膜的柔性。复合膜中纳米粒子在基体中均匀分散,具有高度透明性并可提供显著的防紫外作用,紫外防护效果可通过控制膜中纳米粒子的添加量来调控。

    一种从制备纤维素纳米纤维的废液中回用离子液体的方法

    公开(公告)号:CN108997596B

    公开(公告)日:2020-12-15

    申请号:CN201810750193.0

    申请日:2018-07-09

    Inventor: 潘晖 陈伟 牛逊

    Abstract: 本发明公开了一种从制备纤维素纳米纤维的废液中回用离子液体的方法,包括使用双溶剂对制备纤维素纳米纤维的废液进行萃取分离;对萃取相室温减压蒸馏,收集旋余液进行真空干燥;向干燥产物加入溶剂,析出酸酐,离心分离,减压蒸馏上清液,得到回收的离子液体。本发明中,回收离子液体的方法操作简便、条件温和并且不引入二次污染,具有应用于工业化生产的潜力,离子液体的回收率较高,可以实现再利用,同时回收过程中涉及添加的萃取剂及溶剂均可实现高效回收再利用,实现绿色化生产。

    一种纳米纤维素复合抗菌材料及其制备方法

    公开(公告)号:CN106496622B

    公开(公告)日:2019-01-25

    申请号:CN201610930593.0

    申请日:2016-10-31

    Abstract: 本发明公开了种纳米纤维素复合抗菌材料及其制备方法。该复合包装材料包括两层结构的复合膜,其中层膜基体为聚乳酸,增强相为松香改性的纳米纤维素,另层膜为具有天然抗菌性的壳聚糖。制备方法为用溶剂浇铸法分别制备两层膜,然后层层自组装制备出抗菌复合膜。此制备方法简单,材料环保易得。用到的聚乳酸,松香,纳米纤维素,壳聚糖均来源于生物质。其中的松香与壳聚糖具有天然的抗菌性,对大肠杆菌,金色黄色葡萄球菌有良好的抑菌效果。本发明制备的复合材料中纳米粒子在基体中均匀分散,材料呈光滑,均的外表,力学性能优异,同时膜中的松香与壳聚糖有协同抗菌的效果。在食品包装,医疗器械,机械制造等行业具有潜在的应用价值。

Patent Agency Ranking