一种基于飞秒激光的探测超快现象的共光路干涉装置

    公开(公告)号:CN105181590B

    公开(公告)日:2018-01-05

    申请号:CN201510422202.X

    申请日:2015-07-17

    Applicant: 南开大学

    Abstract: 一种基于飞秒激光的探测超快现象的共光路干涉装置。本装置应用于光学干涉探测的领域,可有效解决当前的超快探测方法的装置结构复杂、稳定性差等问题。本发明方案:飞秒光源发射出的超短脉冲沿法线垂直入射双折射晶体后,分为偏振相互垂直、有一定脉冲间隔的两个脉冲。两个线偏振脉冲经过一个1/4波片,偏振态转变为圆偏振光,对第一个脉冲进行泵浦,在后面加一个反射镜,使光路原方向折返。依次通过1/4波片、双折射晶体,偏振片,最后发生干涉,将泵浦信息固定在干涉条纹中,由CCD接收。该方法简便易行,能够消除非共轴光路引起的各种误差。可操作性强。

    一种通过一步任意角相移消除数字全息零级像的方法

    公开(公告)号:CN104808470B

    公开(公告)日:2017-07-11

    申请号:CN201510264340.X

    申请日:2015-05-22

    Applicant: 南开大学

    Abstract: 一种通过一步任意角相移消除数字全息零级像的方法。本发明首次提出了一种联动共轴双参考光光路,通过调整光路中加载在微动平移台上的分束晶体,能够在微动平移台进行位移时,保证两束参考光的相移量为‑α、2α。基于该光路,提出了配套的算法,将现有的相移消零级数字全息技术由多步改进为一步相移,并且相移量是任意的,消除了多步相移及微动平移台移动产生的误差,使相移技术更加简便、可操作性更强。

    基于微透镜阵列组的低串扰集成成像三维显示方法

    公开(公告)号:CN104007556B

    公开(公告)日:2017-02-15

    申请号:CN201410249464.6

    申请日:2014-06-06

    Applicant: 南开大学

    Abstract: 本发明提出了一种微透镜阵列组的低串扰集成成像三维显示方法。该方法涉及一组双微透镜阵列和待显示元素图像的显示屏。所述显示屏放在第一个微透镜阵列前方的一倍焦距以内,将第二个微透镜阵列放置在第一个透镜阵列的后方。由于缩短了显示屏和透镜阵列之间的距离,更多的光线进入到相应正确的透镜元中,提高光能利用率,同时减少了入射到相邻透镜而形成串扰的光线,减少了串扰信息的来源,降低了集成像的串扰,增大了视场角。第二个微透阵列起集成的作用,将放大后的元素图像集成显示。显示屏中的元素图像和两个微透镜阵列中的透镜元三者一一对应,且中心对齐。

    一种时空分布可调的超短激光脉冲分束方法及装置

    公开(公告)号:CN103823309B

    公开(公告)日:2016-05-04

    申请号:CN201410089655.0

    申请日:2014-03-12

    Applicant: 南开大学

    Abstract: 一种时空分布可调的超短激光脉冲分束方法及装置。该装置由四组楔形双折射晶体对、两片双折射晶体和一个二分之一波片组成,按照两组楔形双折射晶体对和一片双折射晶体的顺序交错放置,二分之一波片放置在第一片双折射晶体之后。每组楔形双折射晶体对由两片楔角相同的楔形双折射晶体倒扣在一起组成,两片楔形双折射晶体的光轴方向互相垂直且在与入射光线垂直的法平面内,每片双折射晶体的光轴都与毗邻的前一片楔形双折射晶体的光轴一致,楔形双折射晶体的厚度由其楔角大小决定。装置可将单一超短激光脉冲分成四个传播路径平行且方向与入射光一致、脉冲间隔均等、能量均等的子脉冲。本发明原理上没有能量损失,能量均分到各个子脉冲中。

    一种基于沃拉斯顿棱镜的空间角分复用全息术的参考光分束方法及其专用装置

    公开(公告)号:CN105467609A

    公开(公告)日:2016-04-06

    申请号:CN201610025212.4

    申请日:2016-01-15

    Applicant: 南开大学

    CPC classification number: G02B27/285 G03H1/12

    Abstract: 本发明公开了一种基于沃拉斯顿棱镜的空间角分复用全息术的参考光分束方法及其专用装置,属于空间角分复用脉冲数字全息术领域。该分束装置由两个延迟结构、两块沃拉斯顿棱镜、两个分光平片和两组双透镜会聚系统组成。通过该装置可将入射的圆偏振态或者两个相互垂直的线偏振态的脉冲光产生多个方向的传输脉冲光,能够有效的应用到空间角分复用全息术中,可以简单的通过旋转沃拉斯顿棱镜使参考光的方向进行改变,而且不会影响参考光束的会聚方向。通过调节沃拉斯顿棱镜可以使复用全息图的频谱均匀的分布在零级像外围,而且具有能量利用率高、调节简单等优点。

    光学4f系统的大成像深度三维显示系统中成像深度的确定方法

    公开(公告)号:CN103869484B

    公开(公告)日:2016-01-13

    申请号:CN201410082819.7

    申请日:2014-03-07

    Applicant: 南开大学

    Abstract: 一种光学4f系统的大成像深度三维显示系统中成像深度的实现方法。本发明属于基于光学4f系统的单目三维成像技术领域,主要为4f系统中频谱面上相位模板中各透镜的焦距和透镜对数选择提供依据。不同成像深度下人眼注视物距确定方法为,根据增强现实的虚拟部分要覆盖真实环境的范围,利用人眼注视在某一物平面时,远点和近点计算公式,采用一种循环迭代的计算方法,逐一算出注视物距si,i=1,2……m。计算出si后,根据注视物距si与相位模板透镜焦距f之间已有的关系式计算出相位模板中不同透镜的焦距和透镜数m对。

    一种基于视差的裸眼三维显示方法及其装置

    公开(公告)号:CN104820292A

    公开(公告)日:2015-08-05

    申请号:CN201510246807.8

    申请日:2015-05-15

    Applicant: 南开大学

    Inventor: 杨勇 王宁 袁小聪

    CPC classification number: G02B27/2242 G02B27/2214

    Abstract: 本发明公开了一种基于视差原理的裸眼三维显示方法及其装置,与现有的基于柱面镜、栅栏的视差裸眼三维显示技术相比,具有:无分辨率损失、不降低显示亮度、连续多视角等特点。该方法将偏振显示器输出具有相互垂直偏振态的两幅左右视角的视差图像,经过由电致双折射材料制作的沃拉斯顿棱镜阵列,不同偏振态的图像以特定夹角出射,形成左右两幅视差图像,夹角通过改变电致双折射材料的折射率实现调节,人眼同时观察到这两幅视差图像可在大脑中合成出三维影像。基于该方法的装置包括:偏振显示器、准直透镜阵列以及电致双折射材料组成的沃拉斯顿棱镜阵列。

    一种基于光学4f系统的三维显示方法

    公开(公告)号:CN103197429B

    公开(公告)日:2015-02-11

    申请号:CN201310151168.8

    申请日:2013-04-27

    Applicant: 南开大学

    Abstract: 一种基于光学4f系统的超大成像深度三维显示方法。本发明属于基于头盔的三维显示技术领域,主要解决三维显示成像深度小、长时间观看易疲劳、无法在单目头盔三维显示中应用的问题。该方法将待显示的三维图像分割成一系列不同成像深度的二维图像,分别采用不同方向的条纹图像对不同深度的二维图像进行调制,获得一幅编码图像。将该编码图像放置在光学4f系统的输入面上,在频谱面上放置一个相位模板,该相位模板由一系列不同焦距的透镜拼接而成,在光学4f系统输出面的将编码的二维图像在相应不同深度的成像位置上重新显示出来,实现超大成像深度的三维显示。

    一种脉冲间隔和数量可调节的超短激光脉冲分束方法及其装置

    公开(公告)号:CN102393567B

    公开(公告)日:2013-06-12

    申请号:CN201110397464.7

    申请日:2011-12-05

    Applicant: 南开大学

    Abstract: 一种脉冲间隔和数量可调节的超短激光脉冲分束方法及其装置。该装置由m组级联的双折射晶体对和精密微丝杆机构组成,每组双折射晶体对由两片楔角相同的楔形双折射晶体倒扣在一起,各片楔形双折射晶体的光轴方向相同且均在与入射光线垂直的法面内,毗邻的各组双折射晶体对的光轴依次沿同一方向逆时针或顺时针旋转45°,各双折射晶体对的通光孔径大小一致,楔形双折射晶体的厚度由其楔角大小决定,各楔形双折射晶体楔角有如下关系:,毗邻双折射晶体对的可调节厚度满足下面的关系:,该装置可将单一超短激光脉冲分成(为大于等于1整数)个同轴、传播方向相同、脉冲间隔可调节、能量均等的子脉冲。本发明原理上没有能量损失,能量均分到各个子脉冲中。

    场景三维信息阵列式光学获取中元素图像阵列自校正方法

    公开(公告)号:CN102497566A

    公开(公告)日:2012-06-13

    申请号:CN201110399970.X

    申请日:2011-12-06

    Applicant: 南开大学

    Abstract: 一种场景三维信息阵列式光学获取中元素图像阵列的自校正方法。主要解决的是元素图像阵列的自校正,为各种场景三维信息获取和应用提供了解决方案,以及可以提高裸眼三维显示效果。目前传统的校正方法需要在获取阶段通过在三维物体上附加标记来校正获取的元素图像,操作复杂,且仅适用可以附加标记的三维物体,无法大规模的推广应用。本发明通过深入分析阵列式光学器件获取的元素图像的特点,获得了元素图像中同名像点的位置满足等差关系的特性,并根据此特性实现了元素图像的自校正。该发明具有校正快速,无需获取端信息、无需辅助标记、方便快捷的优点。

Patent Agency Ranking