一种基于多参数自适应神经网络的滑模控制器设计方法

    公开(公告)号:CN113589689B

    公开(公告)日:2024-01-02

    申请号:CN202110780669.7

    申请日:2021-07-09

    Applicant: 南昌大学

    Abstract: 本发明公开了一种基于多参数自适应神经网络的滑模控制器设计方法,包括:1,建立n自由度旋转关节刚性机械臂动力学模型;2,将步骤1中模型系统转化为基于关节位置的二阶状态方程,并为其设计快速终端滑模面;3,利用RBF神经网络对系统未知动力学参数进行逼近;4,设计自适应非奇异快速终端滑模控制器,并基于步骤3中的动力学参数逼近结果,实现机械臂的无模型控制。本发明适用于受到模型不确定性和外部干扰的影响的机械臂的轨迹跟踪控制,减少了控制设计程序中给出的自适应设计参数的数量,使得机器人动力学的未知非线性函数在RBFNN基础上进行了近似;还提高了误差的收敛速度和跟踪精度,实现了基于李雅普诺夫定理的全局渐近稳

    一种基于多参数自适应神经网络的滑模控制器设计方法

    公开(公告)号:CN113589689A

    公开(公告)日:2021-11-02

    申请号:CN202110780669.7

    申请日:2021-07-09

    Applicant: 南昌大学

    Abstract: 本发明公开了一种基于多参数自适应神经网络的滑模控制器设计方法,包括:1,建立n自由度旋转关节刚性机械臂动力学模型;2,将步骤1中模型系统转化为基于关节位置的二阶状态方程,并为其设计快速终端滑模面;3,利用RBF神经网络对系统未知动力学参数进行逼近;4,设计自适应非奇异快速终端滑模控制器,并基于步骤3中的动力学参数逼近结果,实现机械臂的无模型控制。本发明适用于受到模型不确定性和外部干扰的影响的机械臂的轨迹跟踪控制,减少了控制设计程序中给出的自适应设计参数的数量,使得机器人动力学的未知非线性函数在RBFNN基础上进行了近似;还提高了误差的收敛速度和跟踪精度,实现了基于李雅普诺夫定理的全局渐近稳定。

Patent Agency Ranking