一种基于深度学习的建筑物三维点云配准方法

    公开(公告)号:CN108765475B

    公开(公告)日:2021-11-09

    申请号:CN201810517923.2

    申请日:2018-05-25

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于深度学习的建筑物三维点云配准方法,包括以下步骤:S1、训练数据的获取;S2、深度学习模型的构建;S3、模型训练及调优;S4、待检测数据预处理;S5、检测点云关键区域;S6、检测点云关键点;S7、判断关键点对应关系;S8、计算转换关系及配准。本发明将深度学习应用于点云配准的两个关键步骤:寻找关键点及确定匹配关系。本发明充分利用深度学习对点云数据的表征能力来分步骤寻找关键区域、定位关键点,相对于传统的遍历方式极大地加快了检测速度,并且用深度网络模型学习点云特征而代替手工特征,使得算法更加鲁棒和高效。

    一种基于深度学习的建筑物三维点云配准方法

    公开(公告)号:CN108765475A

    公开(公告)日:2018-11-06

    申请号:CN201810517923.2

    申请日:2018-05-25

    Applicant: 厦门大学

    CPC classification number: G06T7/344 G06T2207/10028 G06T2207/20081

    Abstract: 本发明公开了一种基于深度学习的建筑物三维点云配准方法,包括以下步骤:S1、训练数据的获取;S2、深度学习模型的构建;S3、模型训练及调优;S4、待检测数据预处理;S5、检测点云关键区域;S6、检测点云关键点;S7、判断关键点对应关系;S8、计算转换关系及配准。本发明将深度学习应用于点云配准的两个关键步骤:寻找关键点及确定匹配关系。本发明充分利用深度学习对点云数据的表征能力来分步骤寻找关键区域、定位关键点,相对于传统的遍历方式极大地加快了检测速度,并且用深度网络模型学习点云特征而代替手工特征,使得算法更加鲁棒和高效。

Patent Agency Ranking