基于脑电控制的多尺度光标定位方法

    公开(公告)号:CN107390873B

    公开(公告)日:2020-03-27

    申请号:CN201710609207.2

    申请日:2017-07-25

    Applicant: 厦门大学

    Abstract: 基于脑电控制的多尺度光标定位方法,涉及一种基于脑电控制的光标定位方法。1)开始时,光标位于光标界面的中心,待定位区域为整个光标界面;2)将待定位区域按水平中心线和垂直中心线分成左上、左下、右上、右下四个大小相同的子区域;3)使用者通过脑电信号将光标定位到待定位区域中的某个子区域的中心;4)判断光标是否在目标位置,若是,则方法结束;否则,将光标当前所在的子区域当作新的待定位区域,然后返回步骤2)。采用多尺度定位的方式对基于脑电控制的光标进行定位,克服了传统的基于脑电控制的光标每次只能移动一小段距离的不足,大大提高了定位速度;只使用SSVEP一种脑电信号,操作简单、方便。

    视觉检索中的紧凑视觉描述子深度神经网络生成模型

    公开(公告)号:CN108920727A

    公开(公告)日:2018-11-30

    申请号:CN201810878981.8

    申请日:2018-08-03

    Applicant: 厦门大学

    Abstract: 视觉检索中的紧凑视觉描述子深度神经网络生成模型,涉及图像检索。构建Fisher layer网络;构建分组和二分类模块;基于极大边界条件的损失函数的训练;对于图像库图像和查询图像,首先抽取图像的局部特征,然后用训练好的网络结构对图像的局部特征进行聚合和二值嵌入获得图像的二值编码,根据查询图像的二值编码在图像库中匹配返回相似度高的图像作为粗匹配出候选集,再对候选集使用局部特征进行几何一致性检验进行精确匹配并返回最终查询结果。使用灵活的Fisher网络聚合图像的局部特征生成更高效的全局特征Fisher向量;同时用分组与二分类模块对Fisher向量进行二值编码,得到紧凑的全局二值特征。

    基于脑电控制的多尺度光标定位方法

    公开(公告)号:CN107390873A

    公开(公告)日:2017-11-24

    申请号:CN201710609207.2

    申请日:2017-07-25

    Applicant: 厦门大学

    Abstract: 基于脑电控制的多尺度光标定位方法,涉及一种基于脑电控制的光标定位方法。1)开始时,光标位于光标界面的中心,待定位区域为整个光标界面;2)将待定位区域按水平中心线和垂直中心线分成左上、左下、右上、右下四个大小相同的子区域;3)使用者通过脑电信号将光标定位到待定位区域中的某个子区域的中心;4)判断光标是否在目标位置,若是,则方法结束;否则,将光标当前所在的子区域当作新的待定位区域,然后返回步骤2)。采用多尺度定位的方式对基于脑电控制的光标进行定位,克服了传统的基于脑电控制的光标每次只能移动一小段距离的不足,大大提高了定位速度;只使用SSVEP一种脑电信号,操作简单、方便。

Patent Agency Ranking