-
公开(公告)号:CN111428655A
公开(公告)日:2020-07-17
申请号:CN202010228550.4
申请日:2020-03-27
Applicant: 厦门大学
Abstract: 本发明公开了一种基于深度学习的头皮检测方法,包括以下步骤:步骤S1:采集头皮图像数据;步骤S2:根据头皮属性,对头皮图像进行标注分类,形成各头皮属性的分类数据集;步骤S3:使用ImageNet图像数据库对SqueezeNet模型进行预训练,得到预训练SqueezeNet模型;步骤S4:修改预训练SqueezeNet模型,使其适应回归任务,得到改进型SqueezeNet模型;步骤S5:制定头皮检测精度判定规则,使用步骤S2中的分类数据集对改进型SqueezeNet模型进行重新训练,得到各种头皮属性的头皮检测模型;步骤S6,将待测头皮图像根据头皮属性进行分类,输入对应的头皮检测模型得到预测结果。本发明的头皮状态检测方法可以提高头皮检测的准确率与稳定性。