一种基于地面激光点云的太阳能潜力评估方法

    公开(公告)号:CN106780586B

    公开(公告)日:2019-08-27

    申请号:CN201611000480.7

    申请日:2016-11-14

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于地面激光点云的太阳能潜力评估方法,其包括以下步骤:S1、对原始点云进行抽稀;S2、对抽稀后的点云P进行感兴趣区域地面点集R的提取,S3、设置光源偏差控制角;S4、采用最远点贪心策略来快速计算基点的位置和个数;S5、计算基点太阳位置;S6、采用广义隐藏点移除算法即GHPR算法,进行三维点云场景的遮挡分析,从而进行日照模拟计算;S7、对遮挡分析结果进行二值化阴影绘制;S8、对点云场景进行太阳辐射计算。本发明的评估方法能够提供快速、高效的太阳能资源自动化评估,可以为用户提供调查区域任意时间段的三维太阳能资源分布图。

    一种基于地面激光点云的太阳能潜力评估方法

    公开(公告)号:CN106780586A

    公开(公告)日:2017-05-31

    申请号:CN201611000480.7

    申请日:2016-11-14

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于地面激光点云的太阳能潜力评估方法,其包括以下步骤:S1、对原始点云进行抽稀;S2、对抽稀后的点云P进行感兴趣区域地面点集R的提取,S3、设置光源偏差控制角;S4、采用最远点贪心策略来快速计算基点的位置和个数;S5、计算基点太阳位置;S6、采用广义隐藏点移除算法即GHPR算法,进行三维点云场景的遮挡分析,从而进行日照模拟计算;S7、对遮挡分析结果进行二值化阴影绘制;S8、对点云场景进行太阳辐射计算。本发明的评估方法能够提供快速、高效的太阳能资源自动化评估,可以为用户提供调查区域任意时间段的三维太阳能资源分布图。

    基于局部区间极大值的激光扫描点云树木自动提取方法

    公开(公告)号:CN106407925B

    公开(公告)日:2019-09-27

    申请号:CN201610813651.1

    申请日:2016-09-09

    Applicant: 厦门大学

    Abstract: 本发明公开了一种具有普适性的基于局部区间极大值的激光扫描点云树木的快速自动提取方法,本方法直接基于三维激光点云数据,通过划分水平网格,定义并计算高程区间的累积能量,采用非局部极大值抑制方法,获取树木潜在位置,从而进行自动分割提取。本方法充分利用树木树干结构的显著性,进行网格统计描述,克服了(不同树种,不同树龄)树干和树冠的形态大小各异导致的特征描述难,特征计算结果不稳定的问题。同时本方法密度无关,对树干的部分缺失不敏感,克服了远距离树木因密度过低或是遮挡丢失导致难提取的问题,使本方法不依赖扫描设备的位置摆放,可以适应复杂的扫描环境。本方法无需设置先验拟合模型,因而对噪声不敏感,适合复杂茂密的林区环境,可以在林业调查中发挥较好的稳定性。

    基于局部区间极大值的激光扫描点云树木自动提取方法

    公开(公告)号:CN106407925A

    公开(公告)日:2017-02-15

    申请号:CN201610813651.1

    申请日:2016-09-09

    Applicant: 厦门大学

    Abstract: 本发明公开了一种具有普适性的基于局部区间极大值的激光扫描点云树木的快速自动提取方法,本方法直接基于三维激光点云数据,通过划分水平网格,定义并计算高程区间的累积能量,采用非局部极大值抑制方法,获取树木潜在位置,从而进行自动分割提取。本方法充分利用树木树干结构的显著性,进行网格统计描述,克服了(不同树种,不同树龄)树干和树冠的形态大小各异导致的特征描述难,特征计算结果不稳定的问题。同时本方法密度无关,对树干的部分缺失不敏感,克服了远距离树木因密度过低或是遮挡丢失导致难提取的问题,使本方法不依赖扫描设备的位置摆放,可以适应复杂的扫描环境。本方法无需设置先验拟合模型,因而对噪声不敏感,适合复杂茂密的林区环境,可以在林业调查中发挥较好的稳定性。

    一种植被提取方法及系统

    公开(公告)号:CN105701856B

    公开(公告)日:2018-10-19

    申请号:CN201610028156.X

    申请日:2016-01-15

    Applicant: 厦门大学

    Abstract: 本发明提供了一种植被提取方法及系统。一种植被提取方法包括:从扫描场景得到的回波数据中提取中间回波,其中,所述中间回波为激光雷达点云中具有穿透特性的波形数据,所述回波数据为通过所述多回波激光扫描系统得到的;获取场景三维点云数据,将所述中间回波对应的场景三维点云数据中的中间回波点作为植被点;根据所述植被点从场景三维点云数据中提取全部植被点云数据。本发明解决了激光点云数据中植被主要特征难以获取的问题,有效地提高了植被提取的质量,从而进行了植被树干及树冠的快速定位,其定位结果精确高效。

    一种植被提取方法及系统

    公开(公告)号:CN105701856A

    公开(公告)日:2016-06-22

    申请号:CN201610028156.X

    申请日:2016-01-15

    Applicant: 厦门大学

    CPC classification number: G06T15/00 G06K9/46

    Abstract: 本发明提供了一种植被提取方法及系统。一种植被提取方法包括:从扫描场景得到的回波数据中提取中间回波,其中,所述中间回波为激光雷达点云中具有穿透特性的波形数据,所述回波数据为通过所述多回波激光扫描系统得到的;获取场景三维点云数据,将所述中间回波对应的场景三维点云数据中的中间回波点作为植被点;根据所述植被点从场景三维点云数据中提取全部植被点云数据。本发明解决了激光点云数据中植被主要特征难以获取的问题,有效地提高了植被提取的质量,从而进行了植被树干及树冠的快速定位,其定位结果精确高效。

Patent Agency Ranking