-
公开(公告)号:CN108427289B
公开(公告)日:2021-06-29
申请号:CN201810393045.8
申请日:2018-04-27
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种基于非线性函数的高超声速飞行器跟踪控制方法,本发明涉及基于非线性函数的高超声速飞行器跟踪控制方法。本发明为了解决现有飞行器的控制模型复杂及鲁棒性差的问题。本发明包括:步骤一:将高超声速飞行器模型通过状态反馈控制器进行转化,得到转化后的高超声速飞行器模型;步骤二:根据步骤一得到的转化后的高超声速飞行器模型,设计自适应非线性鲁棒控制器u0。本发明给出了在输入输出线性化模型基础上,通过引入辅助误差变量,将其转为一般多变量二阶系统。针对系统干扰存在未知上界,通过引入了一个新的连续可微的非线性饱和函数,并结合自适应理论,设计了非线性鲁棒控制器。本发明用于飞行器领域。
-
公开(公告)号:CN106406102B
公开(公告)日:2019-06-11
申请号:CN201611187012.5
申请日:2016-12-20
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种含干扰观测器的高超声速飞行器跟踪控制方法,本发明涉及含干扰观测器的高超声速飞行器跟踪控制方法。本发明为了解决现有技术没有证明观测器在观测系统干扰过程中是有界的问题。本发明步骤为:步骤一:根据高超声速飞行器纵向输入输出线性化模型,建立带有系统干扰的二阶系统模型;步骤二:根据步骤一建立的带有系统干扰的二阶系统模型,基于滑模控制理论,设计有限时间终端滑模控制器;步骤三:对步骤二设计的有限时间终端滑模控制器进行系统稳定性证明。本发明方法使得系统滑模面是有限时间稳定的,系统状态是渐近收敛的。本发明应用于高超声速飞行器控制领域。
-
公开(公告)号:CN106707751B
公开(公告)日:2019-05-17
申请号:CN201611187013.X
申请日:2016-12-20
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 航天器终端接近的有限时间饱和避碰控制方法,涉及一种航天器终端的控制方法,具体涉及一种考虑了避碰控制的控制方法。本发明为了解决目前的控制系统还没有一种能够基于有限时间实现有效避碰的控制方法。本发明首先以目标航天器轨道坐标系为参考坐标系,根据目标航天器和追踪航天器的相对运动模型构建追踪航天器相对于目标航天器的轨道运动方程,然后根据避碰模型和控制目标设计基于有限时间饱和设计避碰控制器,设计避碰控制器分别针对外部扰动上界已知的情况和外部扰动上界未知的情况分别设计避碰控制器。本发明适用于航天器终端的避碰控制。
-
公开(公告)号:CN106406102A
公开(公告)日:2017-02-15
申请号:CN201611187012.5
申请日:2016-12-20
Applicant: 哈尔滨工业大学
IPC: G05B13/04
CPC classification number: G05B13/042
Abstract: 一种含干扰观测器的高超声速飞行器跟踪控制方法,本发明涉及含干扰观测器的高超声速飞行器跟踪控制方法。本发明为了解决现有技术没有证明观测器在观测系统干扰过程中是有界的问题。本发明步骤为:步骤一:根据高超声速飞行器纵向输入输出线性化模型,建立带有系统干扰的二阶系统模型;步骤二:根据步骤一建立的带有系统干扰的二阶系统模型,基于滑模控制理论,设计有限时间终端滑模控制器;步骤三:对步骤二设计的有限时间终端滑模控制器进行系统稳定性证明。本发明方法使得系统滑模面是有限时间稳定的,系统状态是渐近收敛的。本发明应用于高超声速飞行器控制领域。
-
公开(公告)号:CN108490786A
公开(公告)日:2018-09-04
申请号:CN201810395163.2
申请日:2018-04-27
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种基于终端滑模的高超声速飞行器鲁棒跟踪控制方法,本发明涉及基于终端滑模的高超声速飞行器鲁棒跟踪控制方法。本发明为了解决现有飞行器的控制模型复杂、鲁棒性差以及没有考虑控制器输入受限的问题。本发明给出了高超声速飞行器输入输出线性化模型,通过引入误差辅助变量,将其转化为二阶系统模型。针对系统干扰存在未知上界和执行器无输入饱和的情形,基于快速非奇异终端滑模面,设计了自适应快速终端滑模控制器,保证了滑模面为实际限时间收敛的。引入双曲正切函数和构造辅助系统,设计了抗饱和的自适应快速终端滑模控制器,满足高超声速飞行器执行器物理约束的要求同时保证系统滑模面在有限时间内收敛的。本发明用于飞行器领域。
-
公开(公告)号:CN108427289A
公开(公告)日:2018-08-21
申请号:CN201810393045.8
申请日:2018-04-27
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种基于非线性函数的高超声速飞行器跟踪控制方法,本发明涉及基于非线性函数的高超声速飞行器跟踪控制方法。本发明为了解决现有飞行器的控制模型复杂及鲁棒性差的问题。本发明包括:步骤一:将高超声速飞行器模型通过状态反馈控制器进行转化,得到转化后的高超声速飞行器模型;步骤二:根据步骤一得到的转化后的高超声速飞行器模型,设计自适应非线性鲁棒控制器u0。本发明给出了在输入输出线性化模型基础上,通过引入辅助误差变量,将其转为一般多变量二阶系统。针对系统干扰存在未知上界,通过引入了一个新的连续可微的非线性饱和函数,并结合自适应理论,设计了非线性鲁棒控制器。本发明用于飞行器领域。
-
公开(公告)号:CN106707751A
公开(公告)日:2017-05-24
申请号:CN201611187013.X
申请日:2016-12-20
Applicant: 哈尔滨工业大学
IPC: G05B13/04
CPC classification number: G05B13/042
Abstract: 航天器终端接近的有限时间饱和避碰控制方法,涉及一种航天器终端的控制方法,具体涉及一种考虑了避碰控制的控制方法。本发明为了解决目前的控制系统还没有一种能够基于有限时间实现有效避碰的控制方法。本发明首先以目标航天器轨道坐标系为参考坐标系,根据目标航天器和追踪航天器的相对运动模型构建追踪航天器相对于目标航天器的轨道运动方程,然后根据避碰模型和控制目标设计基于有限时间饱和设计避碰控制器,设计避碰控制器分别针对外部扰动上界已知的情况和外部扰动上界未知的情况分别设计避碰控制器。本发明适用于航天器终端的避碰控制。
-
-
-
-
-
-