-
公开(公告)号:CN114553394A
公开(公告)日:2022-05-27
申请号:CN202210424254.0
申请日:2022-04-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
Abstract: 本发明公开了基于多密钥全同态方案的补码运算器及运算方法,运算器包括多密钥全同态加法运算器、多密钥全同态减法运算器、多密钥全同态乘法运算器和多密钥全同态除法运算器;所述多密钥全同态加法器由多密钥全同态0‑类加法器构成;所述多密钥全同态减法器由多密钥全同态0‑类加法器与多密钥全同态取非器构成;所述多密钥全同态乘法器由多密钥全同态0‑类加法器、多密钥全同态1‑类加法器、多密钥全同态2‑类加法器和多密钥全同态与门构成;所述多密钥全同态除法器由多密钥全同态取补器、多密钥全同态CAS单元与多密钥全同态异或门构成。本发明构造了任意位的补码整数四则运算器,能够支持任意位的正负整数之间的四则运算,大大提高了MKTFHE方案的实用性。
-
公开(公告)号:CN115499247B
公开(公告)日:2023-03-28
申请号:CN202211432463.6
申请日:2022-11-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
IPC: H04L9/40
Abstract: 本发明公开了一种基于零知识证明的属性凭证验证方法及装置,方法包括:构造属性凭证;签发属性凭证,用户向作为签发者的可信第三方提出属性凭证申请;签发者生成每个用户唯一的随机盐值,签发者对已认证的属性信息和随机盐值进行凭证签发;验证属性凭证,用户从安全信道中获取验证者所需的验证约束条件,用户使用凭证证明生成模块生成对应的零知识的属性值消息,用户将零知识的凭证证明消息通过可信信道发送给验证者;验证者在收到用户发来的凭证证明消息后对消息内容进行解析,验证凭证证明的正确性和有效性。本发明具有保护用户数据隐私和细粒度验证策略的优点,同时以比较低的交互次数和交互通信量完成凭证的签发和证明。
-
公开(公告)号:CN115499247A
公开(公告)日:2022-12-20
申请号:CN202211432463.6
申请日:2022-11-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
IPC: H04L9/40
Abstract: 本发明公开了一种基于零知识证明的属性凭证验证方法及装置,方法包括:构造属性凭证;签发属性凭证,用户向作为签发者的可信第三方提出属性凭证申请;签发者生成每个用户唯一的随机盐值,签发者对已认证的属性信息和随机盐值进行凭证签发;验证属性凭证,用户从安全信道中获取验证者所需的验证约束条件,用户使用凭证证明生成模块生成对应的零知识的属性值消息,用户将零知识的凭证证明消息通过可信信道发送给验证者;验证者在收到用户发来的凭证证明消息后对消息内容进行解析,验证凭证证明的正确性和有效性。本发明具有保护用户数据隐私和细粒度验证策略的优点,同时以比较低的交互次数和交互通信量完成凭证的签发和证明。
-
公开(公告)号:CN114553394B
公开(公告)日:2022-08-16
申请号:CN202210424254.0
申请日:2022-04-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
Abstract: 本发明公开了基于多密钥全同态方案的补码运算器及运算方法,运算器包括多密钥全同态加法运算器、多密钥全同态减法运算器、多密钥全同态乘法运算器和多密钥全同态除法运算器;所述多密钥全同态加法器由多密钥全同态0‑类加法器构成;所述多密钥全同态减法器由多密钥全同态0‑类加法器与多密钥全同态取非器构成;所述多密钥全同态乘法器由多密钥全同态0‑类加法器、多密钥全同态1‑类加法器、多密钥全同态2‑类加法器和多密钥全同态与门构成;所述多密钥全同态除法器由多密钥全同态取补器、多密钥全同态CAS单元与多密钥全同态异或门构成。本发明构造了任意位的补码整数四则运算器,能够支持任意位的正负整数之间的四则运算,大大提高了MKTFHE方案的实用性。
-
公开(公告)号:CN118982063A
公开(公告)日:2024-11-19
申请号:CN202411456528.X
申请日:2024-10-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/098 , G06F18/214 , G06F18/2431
Abstract: 本申请公开了基于联邦学习的模型训练方法、系统及相关设备,涉及计算机技术领域,方法包括:向客户端下发待训练的全局模型,触发各客户端进行模型更新获得前一轮次训练完成后的客户端本地模型,并基于客户端本地数据对客户端本地模型进行模型训练后获得客户端本地训练模型;获取客户端的第一贡献度计算指标值;根据第一贡献函数、共享数据集和客户端的前一轮次训练完成后的客户端本地模型确定第一指标系数;从而确定各客户端的第一贡献度值,并根据第一贡献度值确定目标客户端;根据目标客户端对应的当前轮次的客户端本地训练模型获得当前轮次训练完成后的全局模型。本申请方案有利于提高模型训练的准确性。
-
公开(公告)号:CN115497555B
公开(公告)日:2024-01-05
申请号:CN202210980663.9
申请日:2022-08-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种多物种蛋白质功能预测方法、装置、设备及存储介质,属于生物信息技术领域,该方法包括:将多物种蛋白质的标签矩阵和特征矩阵输入预先构建的跨物种异构网络;在所述跨物种异构网络的每个传播层传播所述标签矩阵和所述特征矩阵,获得传播后的目标标签矩阵和目标特征矩阵;将所述目标标签矩阵和所述目标特征矩阵进行加权获得预测得分矩阵,并基于所述预测得分矩阵获得所述多物种蛋白质(56)对比文件WO 2021041199 A1,2021.03.04WO 2022104265 A1,2022.05.19宋宝兴等“.基于蛋白质相互作用网络挖掘物种内的功能相似蛋白质”《.生物物理学报》.2011,第27卷(第9期),第789-800页.潘怡等.“加权优先级网络在蛋白质功能预测中的应用研究”《.小型微型计算机系统》.2017,第38卷(第9期),第1977-1982页.黄佳“.基于拓扑和序列的多生物网络比对算法的研究”《.《中国优秀硕士学位论文全文数据库》.2022,(第1期),第A006-454页.chen lei等.“Identifying novel proteinphenotype annotations by hybridizingprotein-protein interactions and proteinsequence similarities”《.Moleculargenetics and genomics : MGG》.2016,第291卷(第2期),第913-934页.H Wang等“.Combining graphconvolutional neural networks and labelpropagation”《.ACM trans》.2021,第40卷(第4期),第1-27页.
-
公开(公告)号:CN115497555A
公开(公告)日:2022-12-20
申请号:CN202210980663.9
申请日:2022-08-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种多物种蛋白质功能预测方法、装置、设备及存储介质,属于生物信息技术领域,该方法包括:将多物种蛋白质的标签矩阵和特征矩阵输入预先构建的跨物种异构网络;在所述跨物种异构网络的每个传播层传播所述标签矩阵和所述特征矩阵,获得传播后的目标标签矩阵和目标特征矩阵;将所述目标标签矩阵和所述目标特征矩阵进行加权获得预测得分矩阵,并基于所述预测得分矩阵获得所述多物种蛋白质的功能预测得分。如此,基于跨物种异构网络上实现了标签与特征的同时传播,提高了多物种蛋白质功能的预测的准确性和有效性。
-
公开(公告)号:CN114422606A
公开(公告)日:2022-04-29
申请号:CN202210249791.6
申请日:2022-03-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种联邦学习的通信开销压缩方法、装置、设备及介质,包括:根据联邦学习中的模型参数在训练前后的变化幅度确定基本参数,并将基本参数所在的卷积核中的所有模型参数确定为待传输参数;基于卷积核的目标特征将卷积核中的待传输参数封装至不同数据包中;对不同数据包中的待传输参数进行二值量化,并对待传输参数对应的索引进行位置编码,如此一来,由于一个卷积核内所有待传输参数的位置信息都是固定的,因此一个索引可以反应整个卷积核中所有待传输参数的位置信息,一定程度上降低了索引的通信开销,同时,本申请通过对待传输参数进行量化,对待传输参数对应的索引进行位置编码,进一步减少了通信开销。
-
公开(公告)号:CN113553610B
公开(公告)日:2021-12-31
申请号:CN202111103182.1
申请日:2021-09-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于同态加密和可信硬件的多方隐私保护机器学习方法,包括:将私钥sk发送给各个数据方和可信硬件R;服务器S整合各个数据方上传的密文数据得到密文数据集;服务器S在密文数据集的基础上,将普通机器学习算法中的线性运算替换为同态加法和同态乘法,在密文状态下进行机器学习建模;服务器S在完成密文下的机器学习建模后,将加密的模型密文下发给各个数据方;各个数据方利用私钥解密模型密文,得到由各个数据方的数据D训练得到的模型。本发明利用全同态加密的性质、以及依靠可信硬件实现的模拟自举和执行激活函数功能,能够获得与对未加密数据进行机器学习训练的模型一致的准确率。
-
公开(公告)号:CN111260039B
公开(公告)日:2020-08-07
申请号:CN202010369831.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于辅助任务学习的视频游戏决策方法,包括以下步骤:S1、构建神经网格模型;S2、启动多进程视频游戏环境;S3、判断是否运行了指定轮次,如果否,则进入步骤S4,如果是,则进入步骤S6;S4、获取游戏经验,更新经验池;S5、将经验输入到神经网格模型,更新神经网格模型参数,返回步骤S3;S6、保存神经网格模型;S7、在视频游戏里利用神经网格模型决策;S8、结束。本发明的有益效果是:可以更准确地估计三维场景中的状态价值以及引起状态改变的智能体动作。
-
-
-
-
-
-
-
-
-